{"title":"On the Inviscid Limit Connecting Brinkman’s and Darcy’s Models of Tissue Growth with Nonlinear Pressure","authors":"Charles Elbar, Jakub Skrzeczkowski","doi":"10.1007/s00021-025-00933-3","DOIUrl":null,"url":null,"abstract":"<div><p>Several recent papers have addressed the modelling of tissue growth by multi-phase models where the velocity is related to the pressure by one of the physical laws (Stokes’, Brinkman’s or Darcy’s). While each of these models has been extensively studied, not so much is known about the connection between them. In the recent paper (David et al. in SIAM J. Math. Anal. 56(2):2090–2114, 2024), assuming the linear form of the pressure, the Authors connected two multi-phase models by an inviscid limit: the viscoelastic one (of Brinkman’s type) and the inviscid one (of Darcy’s type). Here, we prove that the same is true for a nonlinear, power-law pressure. The new ingredient is that we use the relation between the pressure <i>p</i> and the Brinkman potential <i>W</i> to deduce compactness in space of <i>p</i> from the compactness in space of <i>W</i>.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-025-00933-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-025-00933-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Several recent papers have addressed the modelling of tissue growth by multi-phase models where the velocity is related to the pressure by one of the physical laws (Stokes’, Brinkman’s or Darcy’s). While each of these models has been extensively studied, not so much is known about the connection between them. In the recent paper (David et al. in SIAM J. Math. Anal. 56(2):2090–2114, 2024), assuming the linear form of the pressure, the Authors connected two multi-phase models by an inviscid limit: the viscoelastic one (of Brinkman’s type) and the inviscid one (of Darcy’s type). Here, we prove that the same is true for a nonlinear, power-law pressure. The new ingredient is that we use the relation between the pressure p and the Brinkman potential W to deduce compactness in space of p from the compactness in space of W.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.