Recent advances of hyaluronic acid-based materials in drug delivery systems and regenerative medicine: A review

IF 4.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Archiv der Pharmazie Pub Date : 2025-03-17 DOI:10.1002/ardp.202400903
Mohamed J. Saadh, Hanan Hassan Ahmed, Radhwan Abdul Kareem, Ashok Kumar Bishoyi, R. Roopashree, Debasish Shit, Renu Arya, Kamal Kant Joshi, Hayder Naji Sameer, Ahmed Yaseen, Zainab H. Athab, Mohaned Adil, Asghar Narmani, Bagher Farhood
{"title":"Recent advances of hyaluronic acid-based materials in drug delivery systems and regenerative medicine: A review","authors":"Mohamed J. Saadh,&nbsp;Hanan Hassan Ahmed,&nbsp;Radhwan Abdul Kareem,&nbsp;Ashok Kumar Bishoyi,&nbsp;R. Roopashree,&nbsp;Debasish Shit,&nbsp;Renu Arya,&nbsp;Kamal Kant Joshi,&nbsp;Hayder Naji Sameer,&nbsp;Ahmed Yaseen,&nbsp;Zainab H. Athab,&nbsp;Mohaned Adil,&nbsp;Asghar Narmani,&nbsp;Bagher Farhood","doi":"10.1002/ardp.202400903","DOIUrl":null,"url":null,"abstract":"<p>Nowadays, diseases have a high rate of incidence and mortality worldwide. On the other side, the drawbacks of conventional modalities in the suppression of diseases have encountered serious problematic issues for the health of human beings. For instance, although various approaches have been applied for the treatment of cancer, it has an ever-increasing rate of incidence and mortality throughout the globe. Thus, there is a fundamental requirement for the development of breakthrough technologies in the inhibition of diseases. Hyaluronic acid (HA) is one of the most practical biopolymers in the suppression of diseases. HA has lots of potential physicochemical (like rheological, structural, molecular weight, and ionization, etc.) and biomedical properties (bioavailability, biocompatibility, CD44 targeting and signaling pathways, components of biological organs, mucoadhesion, immunomodulation, etc.), which made it a potential candidate for the development of breakthrough tools in pharmaceutical and biomedical sciences. The ease of surface modification (carboxylation, amidation, hydroxylation, and esterification), high bioavailability and synthesis routes, and various administration routes are considered as other merits of HA-based vehicles. These mucopolysaccharide HA-based materials have been considerably developed for use in drug delivery systems (DDSs), cancer therapy, wound healing, antiaging, and tissue engineering. This review summarizes the advantages of HA-based DDS and scaffolds in the treatment of diseases.</p>","PeriodicalId":128,"journal":{"name":"Archiv der Pharmazie","volume":"358 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ardp.202400903","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, diseases have a high rate of incidence and mortality worldwide. On the other side, the drawbacks of conventional modalities in the suppression of diseases have encountered serious problematic issues for the health of human beings. For instance, although various approaches have been applied for the treatment of cancer, it has an ever-increasing rate of incidence and mortality throughout the globe. Thus, there is a fundamental requirement for the development of breakthrough technologies in the inhibition of diseases. Hyaluronic acid (HA) is one of the most practical biopolymers in the suppression of diseases. HA has lots of potential physicochemical (like rheological, structural, molecular weight, and ionization, etc.) and biomedical properties (bioavailability, biocompatibility, CD44 targeting and signaling pathways, components of biological organs, mucoadhesion, immunomodulation, etc.), which made it a potential candidate for the development of breakthrough tools in pharmaceutical and biomedical sciences. The ease of surface modification (carboxylation, amidation, hydroxylation, and esterification), high bioavailability and synthesis routes, and various administration routes are considered as other merits of HA-based vehicles. These mucopolysaccharide HA-based materials have been considerably developed for use in drug delivery systems (DDSs), cancer therapy, wound healing, antiaging, and tissue engineering. This review summarizes the advantages of HA-based DDS and scaffolds in the treatment of diseases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Archiv der Pharmazie
Archiv der Pharmazie 医学-化学综合
CiteScore
7.90
自引率
5.90%
发文量
176
审稿时长
3.0 months
期刊介绍: Archiv der Pharmazie - Chemistry in Life Sciences is an international journal devoted to research and development in all fields of pharmaceutical and medicinal chemistry. Emphasis is put on papers combining synthetic organic chemistry, structural biology, molecular modelling, bioorganic chemistry, natural products chemistry, biochemistry or analytical methods with pharmaceutical or medicinal aspects such as biological activity. The focus of this journal is put on original research papers, but other scientifically valuable contributions (e.g. reviews, minireviews, highlights, symposia contributions, discussions, and essays) are also welcome.
期刊最新文献
Xylazine as an emerging new psychoactive substance; focuses on both 5-HT7 and κ-opioid receptors' molecular interactions and isosteric replacement Silybin loaded Ag-nanoparticles as a drug delivery system for solid tumor theragnosis: Extraction, radioiodination, and biodistribution study A review of recent advances in anticancer activity and SAR of pyrazole derivatives Synthesis and analytical profile of new synthetic analogs of angiotensin 1-7, the main balancing peptide of the renin–angiotensin system Recent advances of hyaluronic acid-based materials in drug delivery systems and regenerative medicine: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1