Predicting Performance of Hall Effect Ion Source Using Machine Learning

IF 6.1 Q1 AUTOMATION & CONTROL SYSTEMS Advanced intelligent systems (Weinheim an der Bergstrasse, Germany) Pub Date : 2024-12-25 DOI:10.1002/aisy.202400555
Jaehong Park, Guentae Doh, Dongho Lee, Youngho Kim, Changmin Shin, Su-Jin Shin, Young-Chul Ghim, Sanghoo Park, Wonho Choe
{"title":"Predicting Performance of Hall Effect Ion Source Using Machine Learning","authors":"Jaehong Park,&nbsp;Guentae Doh,&nbsp;Dongho Lee,&nbsp;Youngho Kim,&nbsp;Changmin Shin,&nbsp;Su-Jin Shin,&nbsp;Young-Chul Ghim,&nbsp;Sanghoo Park,&nbsp;Wonho Choe","doi":"10.1002/aisy.202400555","DOIUrl":null,"url":null,"abstract":"<p>Accurate performance prediction methods are essential for the development of high-efficiency Hall effect ion sources, which are employed in industries ranging from material surface treatment to spacecraft electric propulsion (known as Hall thrusters). Traditional methods rely on simplified scaling laws and computationally intensive numerical simulations. Herein, a robust machine learning model is introduced that uses a neural network ensemble to predict the performance of Hall effect ion sources based on design parameters such as discharge channel dimensions and magnetic field structure. The neural networks are trained using 18 000 data points generated from numerical simulations with input powers ranging from sub-kW- to kW-class. The accuracy of the developed machine learning model is demonstrated using untrained 700 W- and 1 kW-class Hall effect ion sources, producing results with deviations of less than 10% compared to the experimentally measured thrust and discharge current, thus surpassing the accuracy of conventional scaling laws. As a high-fidelity surrogate for numerical simulations, the proposed prediction tool provides high prediction accuracy and calculation speed, offering an excellent complement to conventional scaling laws and enhancing the understanding of Hall effect ion source performance characteristics.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 3","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400555","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aisy.202400555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate performance prediction methods are essential for the development of high-efficiency Hall effect ion sources, which are employed in industries ranging from material surface treatment to spacecraft electric propulsion (known as Hall thrusters). Traditional methods rely on simplified scaling laws and computationally intensive numerical simulations. Herein, a robust machine learning model is introduced that uses a neural network ensemble to predict the performance of Hall effect ion sources based on design parameters such as discharge channel dimensions and magnetic field structure. The neural networks are trained using 18 000 data points generated from numerical simulations with input powers ranging from sub-kW- to kW-class. The accuracy of the developed machine learning model is demonstrated using untrained 700 W- and 1 kW-class Hall effect ion sources, producing results with deviations of less than 10% compared to the experimentally measured thrust and discharge current, thus surpassing the accuracy of conventional scaling laws. As a high-fidelity surrogate for numerical simulations, the proposed prediction tool provides high prediction accuracy and calculation speed, offering an excellent complement to conventional scaling laws and enhancing the understanding of Hall effect ion source performance characteristics.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习预测霍尔效应离子源的性能
准确的性能预测方法对于开发高效霍尔效应离子源至关重要,这些离子源应用于从材料表面处理到航天器电力推进(称为霍尔推进器)等行业。传统的方法依赖于简化的比例定律和计算密集的数值模拟。本文介绍了一种鲁棒的机器学习模型,该模型利用神经网络集成来预测霍尔效应离子源的性能,该模型基于放电通道尺寸和磁场结构等设计参数。神经网络使用数值模拟产生的18000个数据点进行训练,输入功率从亚千瓦级到千瓦级不等。使用未经训练的700 W和1 kw级霍尔效应离子源证明了所开发的机器学习模型的准确性,与实验测量的推力和放电电流相比,产生的结果偏差小于10%,从而超过了传统标度定律的准确性。作为数值模拟的高保真替代品,该预测工具具有较高的预测精度和计算速度,是对传统标度定律的良好补充,增强了对霍尔效应离子源性能特征的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Issue Information Ultralight Soft Wearable Haptic Interface with Shear-Normal-Vibration Feedback Symbolic Reservoir Computing within Memristive Crossbar Arrays as a Cellular Automata Electronic-Free Particle Robots Communicate through Architected Tentacles Advances in 3D Printing Technologies for Fabricating Magnetic Soft Microrobots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1