CKMT1 deficiency contributes to mitochondrial dysfunction and promotes intestinal epithelial cell apoptosis via reverse electron transfer-derived ROS in colitis.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY Cell Death & Disease Pub Date : 2025-03-15 DOI:10.1038/s41419-025-07504-4
Zhijie Wang, Haicong Wu, Xin Chang, Yihang Song, Yan Chen, Ziwei Yan, Lun Gu, Ruxi Pang, Tian Xia, Zixuan He, Zhaoshen Li, Shuling Wang, Yu Bai
{"title":"CKMT1 deficiency contributes to mitochondrial dysfunction and promotes intestinal epithelial cell apoptosis via reverse electron transfer-derived ROS in colitis.","authors":"Zhijie Wang, Haicong Wu, Xin Chang, Yihang Song, Yan Chen, Ziwei Yan, Lun Gu, Ruxi Pang, Tian Xia, Zixuan He, Zhaoshen Li, Shuling Wang, Yu Bai","doi":"10.1038/s41419-025-07504-4","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial dysfunction contributes to the pathogenesis of ulcerative colitis (UC). As a mitochondrial isozyme of creatine kinases, which control energy metabolism, CKMT1 is thought to be a critical molecule in biological processes. However, the specific role of CKMT1 in intestinal inflammation remains largely unknown. Here, we observed markedly decreased CKMT1 expression in the colon tissues of UC patients and dextran sodium sulfate (DSS)-induced colitis mice. We generated intestinal epithelial-specific CKMT1 knockout mice and demonstrated the key role of CKMT1 in mitochondrial homeostasis, intestinal epithelial barrier function, oxidative stress, and apoptosis. In the in vitro experiments, CKMT1 expression limited the activation of the intrinsic and extrinsic apoptotic pathways in IECs. Mechanistically, the loss of CKMT1 expression in IECs increased TNF-α-induced mitochondrial reactive oxygen species (ROS) generation via reverse electron transfer (RET). RET-ROS promoted mitochondrial permeability transition pore (mPTP) opening, ultimately resulting in cell apoptosis during intestinal inflammation. In conclusion, our data demonstrated that CKMT1 is important in maintaining intestinal homeostasis and mitochondrial function. This study provides a promising basis for future research and a potential therapeutic target for inflammatory bowel disease (IBD).</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"177"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07504-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial dysfunction contributes to the pathogenesis of ulcerative colitis (UC). As a mitochondrial isozyme of creatine kinases, which control energy metabolism, CKMT1 is thought to be a critical molecule in biological processes. However, the specific role of CKMT1 in intestinal inflammation remains largely unknown. Here, we observed markedly decreased CKMT1 expression in the colon tissues of UC patients and dextran sodium sulfate (DSS)-induced colitis mice. We generated intestinal epithelial-specific CKMT1 knockout mice and demonstrated the key role of CKMT1 in mitochondrial homeostasis, intestinal epithelial barrier function, oxidative stress, and apoptosis. In the in vitro experiments, CKMT1 expression limited the activation of the intrinsic and extrinsic apoptotic pathways in IECs. Mechanistically, the loss of CKMT1 expression in IECs increased TNF-α-induced mitochondrial reactive oxygen species (ROS) generation via reverse electron transfer (RET). RET-ROS promoted mitochondrial permeability transition pore (mPTP) opening, ultimately resulting in cell apoptosis during intestinal inflammation. In conclusion, our data demonstrated that CKMT1 is important in maintaining intestinal homeostasis and mitochondrial function. This study provides a promising basis for future research and a potential therapeutic target for inflammatory bowel disease (IBD).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
期刊最新文献
CKMT1 deficiency contributes to mitochondrial dysfunction and promotes intestinal epithelial cell apoptosis via reverse electron transfer-derived ROS in colitis. Core N-DRC components play a crucial role in embryonic development and postnatal organ development. Genetic deletion of G protein-coupled receptor 56 aggravates traumatic brain injury through the microglial CCL3/4/5 upregulation targeted to CCR5. TIMM23 overexpression drives NSCLC cell growth and survival by enhancing mitochondrial function. Both direct and indirect suppression of MCL1 synergizes with BCLXL inhibition in preclinical models of gastric cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1