Yan Song, Xiaohui Xing, Yilei Xiao, Qian Luo, Bing Gu, Yahong Cheng, Yijing Zhao, Weiyang Liu, Dexiang Liu, Zhen Wang
{"title":"Liposome-loaded miR-34c-5p attenuates apoptosis and oxidative stress following hypoxia-ischemia brain damage in neonatal mice by targeting Arhgap26.","authors":"Yan Song, Xiaohui Xing, Yilei Xiao, Qian Luo, Bing Gu, Yahong Cheng, Yijing Zhao, Weiyang Liu, Dexiang Liu, Zhen Wang","doi":"10.1016/j.ejphar.2025.177471","DOIUrl":null,"url":null,"abstract":"<p><p>Neonatal hypoxia-ischemia (HI) brain injury is considered a major cause of neonatal mortality and chronic disease morbidity worldwide. Despite its clinical importance, therapeutic options for HI injury remain limited. Here we demonstrated that miR-34c-5p expression peaks at postnatal day 10 in mice. Meanwhile, the miR-34c-5p levels in the lesioned cortex decreased following HI insult in neonatal mice. miR-34c-5p overexpression confers neuroprotective effects by attenuating brain injury and ROS production. These protective mechanisms were mediated through the inhibition of caspase 3 activation, suppression of microglial activation, and downregulation of pro-inflammatory cytokines in the injured cortex. In contrast, miR-34c-5p downregulation markedly aggravated the infarct area after HI injury. Additionally, miR-34c-5p overexpression improved short-term motor coordination and long-term neurological outcomes, including locomotor activity, learning, and memory functions, which were associated with upregulated synaptic protein expression. Importantly, we developed a non-invasive intranasal delivery system using liposome-encapsulated miR-34c-5p mimics, which significantly ameliorated brain injury at 3 days post-HI. Mechanistic studies revealed that miR-34c-5p directly targets the 3' untranslated region of GTPase activating protein 26 (Arhgap26). In conclusion, we identified a non-invasive method for successfully delivering miR-34c-5p to improve functional recovery after HI insult by targeting Arhgap26.</p>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":" ","pages":"177471"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejphar.2025.177471","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Neonatal hypoxia-ischemia (HI) brain injury is considered a major cause of neonatal mortality and chronic disease morbidity worldwide. Despite its clinical importance, therapeutic options for HI injury remain limited. Here we demonstrated that miR-34c-5p expression peaks at postnatal day 10 in mice. Meanwhile, the miR-34c-5p levels in the lesioned cortex decreased following HI insult in neonatal mice. miR-34c-5p overexpression confers neuroprotective effects by attenuating brain injury and ROS production. These protective mechanisms were mediated through the inhibition of caspase 3 activation, suppression of microglial activation, and downregulation of pro-inflammatory cytokines in the injured cortex. In contrast, miR-34c-5p downregulation markedly aggravated the infarct area after HI injury. Additionally, miR-34c-5p overexpression improved short-term motor coordination and long-term neurological outcomes, including locomotor activity, learning, and memory functions, which were associated with upregulated synaptic protein expression. Importantly, we developed a non-invasive intranasal delivery system using liposome-encapsulated miR-34c-5p mimics, which significantly ameliorated brain injury at 3 days post-HI. Mechanistic studies revealed that miR-34c-5p directly targets the 3' untranslated region of GTPase activating protein 26 (Arhgap26). In conclusion, we identified a non-invasive method for successfully delivering miR-34c-5p to improve functional recovery after HI insult by targeting Arhgap26.
期刊介绍:
The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems.
The scope includes:
Behavioural pharmacology
Neuropharmacology and analgesia
Cardiovascular pharmacology
Pulmonary, gastrointestinal and urogenital pharmacology
Endocrine pharmacology
Immunopharmacology and inflammation
Molecular and cellular pharmacology
Regenerative pharmacology
Biologicals and biotherapeutics
Translational pharmacology
Nutriceutical pharmacology.