{"title":"Pharmacological landscape of endoplasmic reticulum stress: uncovering therapeutic avenues for metabolic diseases.","authors":"Ghallab Alotaibi, Abdullah Alkhammash","doi":"10.1016/j.ejphar.2025.177509","DOIUrl":null,"url":null,"abstract":"<p><p>The endoplasmic reticulum (ER) plays a fundamental role in maintaining cellular homeostasis by ensuring proper protein folding, lipid metabolism, and calcium regulation. However, disruptions to ER function, known as ER stress, activate the unfolded protein response (UPR) to restore balance. Chronic or unresolved ER stress contributes to metabolic dysfunctions, including insulin resistance, non-alcoholic fatty liver disease (NAFLD), and neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Recent studies have also highlighted the importance of mitochondria-ER contact sites (MERCs) and ER-associated inflammation in disease progression. This review explores the current pharmacological landscape targeting ER stress, focusing on therapeutic strategies for rare metabolic and neurodegenerative diseases. It examines small molecules such as tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid (4-PBA), repurposed drugs like 17-AAG (17-N-allylamino-17demethoxygeldanamycin (tanespimycin)) and berberine, and phytochemicals such as resveratrol and hesperidin. Additionally, it discusses emerging therapeutic areas, including soluble epoxide hydrolase (sEH) inhibitors for metabolic disorders and MERCs modulation for neurological diseases. The review emphasizes challenges in translating these therapies to clinical applications, such as toxicity, off-target effects, limited bioavailability, and the lack of large-scale randomized controlled trials (RCTs). It also highlights the potential of personalized medicine approaches and pharmacogenomics in optimizing ER stress-targeting therapies.</p>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":" ","pages":"177509"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejphar.2025.177509","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The endoplasmic reticulum (ER) plays a fundamental role in maintaining cellular homeostasis by ensuring proper protein folding, lipid metabolism, and calcium regulation. However, disruptions to ER function, known as ER stress, activate the unfolded protein response (UPR) to restore balance. Chronic or unresolved ER stress contributes to metabolic dysfunctions, including insulin resistance, non-alcoholic fatty liver disease (NAFLD), and neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Recent studies have also highlighted the importance of mitochondria-ER contact sites (MERCs) and ER-associated inflammation in disease progression. This review explores the current pharmacological landscape targeting ER stress, focusing on therapeutic strategies for rare metabolic and neurodegenerative diseases. It examines small molecules such as tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid (4-PBA), repurposed drugs like 17-AAG (17-N-allylamino-17demethoxygeldanamycin (tanespimycin)) and berberine, and phytochemicals such as resveratrol and hesperidin. Additionally, it discusses emerging therapeutic areas, including soluble epoxide hydrolase (sEH) inhibitors for metabolic disorders and MERCs modulation for neurological diseases. The review emphasizes challenges in translating these therapies to clinical applications, such as toxicity, off-target effects, limited bioavailability, and the lack of large-scale randomized controlled trials (RCTs). It also highlights the potential of personalized medicine approaches and pharmacogenomics in optimizing ER stress-targeting therapies.
期刊介绍:
The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems.
The scope includes:
Behavioural pharmacology
Neuropharmacology and analgesia
Cardiovascular pharmacology
Pulmonary, gastrointestinal and urogenital pharmacology
Endocrine pharmacology
Immunopharmacology and inflammation
Molecular and cellular pharmacology
Regenerative pharmacology
Biologicals and biotherapeutics
Translational pharmacology
Nutriceutical pharmacology.