Global output of clinical application research on artificial intelligence in the past decade: a scientometric study and science mapping.

IF 6.3 4区 医学 Q1 MEDICINE, GENERAL & INTERNAL Systematic Reviews Pub Date : 2025-03-15 DOI:10.1186/s13643-025-02779-2
Ji-Yuan Shi, Shu-Jin Yue, Hong-Shuang Chen, Fei-Yu Fang, Xue-Lian Wang, Jia-Jun Xue, Yang Zhao, Zheng Li, Chao Sun
{"title":"Global output of clinical application research on artificial intelligence in the past decade: a scientometric study and science mapping.","authors":"Ji-Yuan Shi, Shu-Jin Yue, Hong-Shuang Chen, Fei-Yu Fang, Xue-Lian Wang, Jia-Jun Xue, Yang Zhao, Zheng Li, Chao Sun","doi":"10.1186/s13643-025-02779-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artificial intelligence (AI) has shown immense potential in the field of medicine, but its actual effectiveness and safety still need to be validated through clinical trials. Currently, the research themes, methodologies, and development trends of AI-related clinical trials remain unclear, and further exploration of these studies will be crucial for uncovering AI's practical application potential and promoting its broader adoption in clinical settings.</p><p><strong>Objective: </strong>To analyze the current status, hotspots, and trends of published clinical research on AI applications.</p><p><strong>Methods: </strong>Publications related to AI clinical applications were retrieved from the Web of Science database. Relevant data were extracted using VOSviewer 1.6.17 to generate visual cooperation network maps for countries, organizations, authors, and keywords. Burst citation detection for keywords and citations was performed using CiteSpace 5.8.R3 to identify sudden surges in citation frequency within a short period, and the theme evolution was analyzed using SciMAT to track the development and trends of research topics over time.</p><p><strong>Results: </strong>A total of 22,583 articles were obtained from the Web of Science database. Seven-hundred and thirty-five AI clinical application research were published by 1764 institutions from 53 countries. The majority of publications were contributed by the United States, China, and the UK. Active collaborations were noted among leading authors, particularly those from developed countries. The publications mainly focused on evaluating the application value of AI technology in the fields of disease diagnosis and classification, disease risk prediction and management, assisted surgery, and rehabilitation. Deep learning and chatbot technologies were identified as emerging research hotspots in recent studies on AI applications.</p><p><strong>Conclusions: </strong>A total of 735 articles on AI in clinical research were analyzed, with publication volume and citation counts steadily increasing each year. Institutions and researchers from the United States contributed the most to the research output in this field. Key areas of focus included AI applications in surgery, rehabilitation, disease diagnosis, risk prediction, and health management, with emerging trends in deep learning and chatbots. This study also provides detailed and intuitive information about important articles, journals, core authors, institutions, and topics in the field through visualization maps, which will help researchers quickly understand the current status, hotspots, and trends of artificial intelligence clinical application research. Future clinical trials of artificial intelligence should strengthen scientific design, ethical compliance, and interdisciplinary and international cooperation and pay more attention to its practical clinical value and reliable application in diverse scenarios.</p>","PeriodicalId":22162,"journal":{"name":"Systematic Reviews","volume":"14 1","pages":"62"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909824/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13643-025-02779-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Artificial intelligence (AI) has shown immense potential in the field of medicine, but its actual effectiveness and safety still need to be validated through clinical trials. Currently, the research themes, methodologies, and development trends of AI-related clinical trials remain unclear, and further exploration of these studies will be crucial for uncovering AI's practical application potential and promoting its broader adoption in clinical settings.

Objective: To analyze the current status, hotspots, and trends of published clinical research on AI applications.

Methods: Publications related to AI clinical applications were retrieved from the Web of Science database. Relevant data were extracted using VOSviewer 1.6.17 to generate visual cooperation network maps for countries, organizations, authors, and keywords. Burst citation detection for keywords and citations was performed using CiteSpace 5.8.R3 to identify sudden surges in citation frequency within a short period, and the theme evolution was analyzed using SciMAT to track the development and trends of research topics over time.

Results: A total of 22,583 articles were obtained from the Web of Science database. Seven-hundred and thirty-five AI clinical application research were published by 1764 institutions from 53 countries. The majority of publications were contributed by the United States, China, and the UK. Active collaborations were noted among leading authors, particularly those from developed countries. The publications mainly focused on evaluating the application value of AI technology in the fields of disease diagnosis and classification, disease risk prediction and management, assisted surgery, and rehabilitation. Deep learning and chatbot technologies were identified as emerging research hotspots in recent studies on AI applications.

Conclusions: A total of 735 articles on AI in clinical research were analyzed, with publication volume and citation counts steadily increasing each year. Institutions and researchers from the United States contributed the most to the research output in this field. Key areas of focus included AI applications in surgery, rehabilitation, disease diagnosis, risk prediction, and health management, with emerging trends in deep learning and chatbots. This study also provides detailed and intuitive information about important articles, journals, core authors, institutions, and topics in the field through visualization maps, which will help researchers quickly understand the current status, hotspots, and trends of artificial intelligence clinical application research. Future clinical trials of artificial intelligence should strengthen scientific design, ethical compliance, and interdisciplinary and international cooperation and pay more attention to its practical clinical value and reliable application in diverse scenarios.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Systematic Reviews
Systematic Reviews Medicine-Medicine (miscellaneous)
CiteScore
8.30
自引率
0.00%
发文量
241
审稿时长
11 weeks
期刊介绍: Systematic Reviews encompasses all aspects of the design, conduct and reporting of systematic reviews. The journal publishes high quality systematic review products including systematic review protocols, systematic reviews related to a very broad definition of health, rapid reviews, updates of already completed systematic reviews, and methods research related to the science of systematic reviews, such as decision modelling. At this time Systematic Reviews does not accept reviews of in vitro studies. The journal also aims to ensure that the results of all well-conducted systematic reviews are published, regardless of their outcome.
期刊最新文献
Athlete monitoring in handball (ATHMON HB): a systematic review protocol. Global output of clinical application research on artificial intelligence in the past decade: a scientometric study and science mapping. Measuring health-related quality of life among university students: a scoping review protocol. Summarizing attributable factors and evaluating risk of bias of Mendelian randomization studies for Alzheimer's dementia and cognitive status: a systematic review and meta-analysis. Effects of transcranial direct current stimulation (tDCS) on motor function among people with stroke: evidence mapping.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1