Clinical Validation of a Targeted RNA-Sequencing Assay for Driver Gene Alteration Detection in Non-Small Cell Lung Cancer.

IF 4.1 3区 医学 Q1 GENETICS & HEREDITY Molecular Diagnosis & Therapy Pub Date : 2025-03-14 DOI:10.1007/s40291-025-00774-w
Ji Li, Xiaohua Shi, Hui Zhang, Xiaojing Lin, Shan Zheng, Weizhi Chen, Yang Zhou, Zhiyong Liang
{"title":"Clinical Validation of a Targeted RNA-Sequencing Assay for Driver Gene Alteration Detection in Non-Small Cell Lung Cancer.","authors":"Ji Li, Xiaohua Shi, Hui Zhang, Xiaojing Lin, Shan Zheng, Weizhi Chen, Yang Zhou, Zhiyong Liang","doi":"10.1007/s40291-025-00774-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>With the increasing number of diagnostic biomarkers associated with tumor diagnosis, targeted therapy, and immunotherapy, access to clinical pathological specimens of an appropriate size for analysis is becoming a problem. Conventional high-throughput sequencing assays for non-small cell lung cancer (NSCLC) often necessitate the extraction of separate DNA and RNA samples to achieve precise detection of various mutation types. This study aimed to employ RNA-next-generation sequencing (NGS) technology to simultaneously detect different types of mutations in NSCLC samples, including single nucleotide variations, insertions and deletions, fusions/rearrangements, and exon skipping, thereby addressing the issue of limited sample availability.</p><p><strong>Methods: </strong>Two hundred and twenty cases of formalin-fixed paraffin-embedded NSCLC clinical specimens were retrospectively included for targeted RNA sequencing based on the principle of probe hybridization capture. Lung cancer tissue samples with different storage times were compared for success in DNA-NGS and RNA-NGS assays. The clinical detection performance of RNA-NGS was evaluated by comparing its results to those of DNA-NGS and clinical assays. Samples with inconsistent results were further verified by immunohistochemistry, amplification refractory mutation system-polymerase chain reaction, or droplet digital polymerase chain reaction.</p><p><strong>Results: </strong>DNA-NGS exhibited an overall success rate of 91.82% in all samples, while RNA-NGS achieved an overall success rate of 92.73%. However, the success rate declined with longer storage times. Compared with DNA-NGS, targeted RNA sequencing for single nucleotide variation/insertion and deletion detection achieved a sensitivity of 93.75%, a specificity of 100%, and an overall concordance of 97.86%. Compared with the validated results, it achieved a sensitivity of 97.96%, a specificity of 99.28%, an and overall concordance of 98.93% in fusion/rearrangement and Met exon skipping detection, which was superior to DNA-NGS. Compared to clinical testing, this assay demonstrated a sensitivity of 93.33%, a specificity of 100%, and an overall concordance rate of 97.93%.</p><p><strong>Conclusions: </strong>This study substantiates that the targeted RNA-sequencing assay, based on probe hybridization capture, represents a superior detection technology platform for the application of drug targeting. It expeditiously and reliably provides all the requisite biomarkers for current NSCLC targeted therapies in a single-sample testing workflow, facilitating rapid clinical diagnosis and the formulation of rational treatment plans by clinicians.</p>","PeriodicalId":49797,"journal":{"name":"Molecular Diagnosis & Therapy","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diagnosis & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40291-025-00774-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objective: With the increasing number of diagnostic biomarkers associated with tumor diagnosis, targeted therapy, and immunotherapy, access to clinical pathological specimens of an appropriate size for analysis is becoming a problem. Conventional high-throughput sequencing assays for non-small cell lung cancer (NSCLC) often necessitate the extraction of separate DNA and RNA samples to achieve precise detection of various mutation types. This study aimed to employ RNA-next-generation sequencing (NGS) technology to simultaneously detect different types of mutations in NSCLC samples, including single nucleotide variations, insertions and deletions, fusions/rearrangements, and exon skipping, thereby addressing the issue of limited sample availability.

Methods: Two hundred and twenty cases of formalin-fixed paraffin-embedded NSCLC clinical specimens were retrospectively included for targeted RNA sequencing based on the principle of probe hybridization capture. Lung cancer tissue samples with different storage times were compared for success in DNA-NGS and RNA-NGS assays. The clinical detection performance of RNA-NGS was evaluated by comparing its results to those of DNA-NGS and clinical assays. Samples with inconsistent results were further verified by immunohistochemistry, amplification refractory mutation system-polymerase chain reaction, or droplet digital polymerase chain reaction.

Results: DNA-NGS exhibited an overall success rate of 91.82% in all samples, while RNA-NGS achieved an overall success rate of 92.73%. However, the success rate declined with longer storage times. Compared with DNA-NGS, targeted RNA sequencing for single nucleotide variation/insertion and deletion detection achieved a sensitivity of 93.75%, a specificity of 100%, and an overall concordance of 97.86%. Compared with the validated results, it achieved a sensitivity of 97.96%, a specificity of 99.28%, an and overall concordance of 98.93% in fusion/rearrangement and Met exon skipping detection, which was superior to DNA-NGS. Compared to clinical testing, this assay demonstrated a sensitivity of 93.33%, a specificity of 100%, and an overall concordance rate of 97.93%.

Conclusions: This study substantiates that the targeted RNA-sequencing assay, based on probe hybridization capture, represents a superior detection technology platform for the application of drug targeting. It expeditiously and reliably provides all the requisite biomarkers for current NSCLC targeted therapies in a single-sample testing workflow, facilitating rapid clinical diagnosis and the formulation of rational treatment plans by clinicians.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于非小细胞肺癌驱动基因改变检测的靶向 RNA 序列测定的临床验证
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
2.50%
发文量
53
审稿时长
>12 weeks
期刊介绍: Molecular Diagnosis & Therapy welcomes current opinion articles on emerging or contentious issues, comprehensive narrative reviews, systematic reviews (as outlined by the PRISMA statement), original research articles (including short communications) and letters to the editor. All manuscripts are subject to peer review by international experts.
期刊最新文献
Clinical Validation of a Targeted RNA-Sequencing Assay for Driver Gene Alteration Detection in Non-Small Cell Lung Cancer. Flavonoids in the Treatment of Non-small Cell Lung Cancer via Immunomodulation: Progress to Date. Selecting Targets for Molecular Imaging of Gastric Cancer: An Immunohistochemical Evaluation. Advancing Rabies Diagnosis: Time for a New "Gold Standard"? Leveraging Multi-omics to Disentangle the Complexity of Ovarian Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1