All-Climate and Nonflammable Electrolyte with a Strong Anion–Solvent Interaction for High-Performance Lithium Metal Batteries

IF 18.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2025-03-16 DOI:10.1021/acsenergylett.4c03307
Chi Ma, Chuankai Fu, Sheng Chang, Xing Xu, Guangxiang Zhang, Ziwei Liu, Hua Huo, Lishuang Fan, Geping Yin, Yulin Ma
{"title":"All-Climate and Nonflammable Electrolyte with a Strong Anion–Solvent Interaction for High-Performance Lithium Metal Batteries","authors":"Chi Ma, Chuankai Fu, Sheng Chang, Xing Xu, Guangxiang Zhang, Ziwei Liu, Hua Huo, Lishuang Fan, Geping Yin, Yulin Ma","doi":"10.1021/acsenergylett.4c03307","DOIUrl":null,"url":null,"abstract":"Reinforced security and temperature tolerance are key prerequisites for the practical application of lithium metal batteries (LMBs). Achieving an optimal balance between maintaining a stable interface at a high temperature and ensuring rapid ion transport under a low temperature remains a critical challenge. Herein, an all-climate nonflammable electrolyte comprised of triethyl phosphate (TEP), lithium bis((trifluoromethyl)sulfonyl) azide (LiTFSI), and lithium nitrate (LiNO<sub>3</sub>) is proposed. The strong interaction between NO<sub>3</sub><sup>–</sup> and TEP broadens the melting point of the electrolyte to −91.5 °C. A well-regulated lithium-ion solvation structure with low desolvation energy contributes to the formation of a durable inorganic–organic hybrid solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI), thereby enhancing the interfacial compatibility significantly. Consequently, the LMBs with the optimized TEP-based electrolyte demonstrate remarkable electrochemical performance in a wide temperature range of −60∼100 °C. The valuable insights gained from this work can offer theoretical guidance for developing wide-temperature electrolytes and high-performance LMBs.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"17 1","pages":""},"PeriodicalIF":18.2000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c03307","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Reinforced security and temperature tolerance are key prerequisites for the practical application of lithium metal batteries (LMBs). Achieving an optimal balance between maintaining a stable interface at a high temperature and ensuring rapid ion transport under a low temperature remains a critical challenge. Herein, an all-climate nonflammable electrolyte comprised of triethyl phosphate (TEP), lithium bis((trifluoromethyl)sulfonyl) azide (LiTFSI), and lithium nitrate (LiNO3) is proposed. The strong interaction between NO3 and TEP broadens the melting point of the electrolyte to −91.5 °C. A well-regulated lithium-ion solvation structure with low desolvation energy contributes to the formation of a durable inorganic–organic hybrid solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI), thereby enhancing the interfacial compatibility significantly. Consequently, the LMBs with the optimized TEP-based electrolyte demonstrate remarkable electrochemical performance in a wide temperature range of −60∼100 °C. The valuable insights gained from this work can offer theoretical guidance for developing wide-temperature electrolytes and high-performance LMBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高性能锂金属电池用具有强阴离子-溶剂相互作用的全天候不燃电解质
增强安全性和耐温性是锂金属电池(lmb)实际应用的关键前提。在高温下维持稳定的界面和确保低温下离子快速传输之间实现最佳平衡仍然是一个关键的挑战。本文提出了一种由磷酸三乙酯(TEP)、二((三氟甲基)磺酰)叠氮化锂(LiTFSI)和硝酸锂(LiNO3)组成的全气候不燃电解质。NO3 -与TEP之间的强相互作用使电解质的熔点扩大到- 91.5℃。调节良好的锂离子溶剂化结构和低脱溶能有助于形成持久的无机-有机混合固体电解质界面相(SEI)和阴极电解质界面相(CEI),从而显著提高界面相容性。因此,具有优化tep基电解质的lmb在−60 ~ 100°C的宽温度范围内表现出卓越的电化学性能。本研究获得的宝贵见解可以为开发宽温电解质和高性能lmb提供理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
Electrochemically Mediated Separation of Carbon Monoxide Using a Ni-Based Redox Couple Regulating Species Transport in Metal–Organic Frameworks for Lithium Metal Batteries Regulating Species Transport in Metal–Organic Frameworks for Lithium Metal Batteries Electrochemically Mediated Separation of Carbon Monoxide Using a Ni-Based Redox Couple Electrochemically Mediated Separation of Carbon Monoxide Using a Ni-Based Redox Couple
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1