Christoph Griesser, Sergio Diaz-Coello, Matteo Olgiati, Wanderson Ferraz do Valle, Toni Moser, Andrea Auer, Elena Pastor, Markus Valtiner, Julia Kunze-Liebhäuser
{"title":"Surface Chemistry of WC Powder Electrocatalysts Probed In situ with NAP-XPS","authors":"Christoph Griesser, Sergio Diaz-Coello, Matteo Olgiati, Wanderson Ferraz do Valle, Toni Moser, Andrea Auer, Elena Pastor, Markus Valtiner, Julia Kunze-Liebhäuser","doi":"10.1002/anie.202500965","DOIUrl":null,"url":null,"abstract":"Tungsten carbide (WC) is a renowned compound catalyst material for electrochemical water splitting, and its high electrocatalytic activity towards the hydrogen evolution reaction (HER) has been repeatedly reported. However, its susceptibility to oxidation raises the fundamental question of the underlying reason for its high activity, especially since passivation and thus potential deactivation can occur not only in air but also during reaction. Hence, the investigation of the surface chemistry under true operating conditions is crucial for a fundamental understanding of the electrocatalytic process. In this work we use electrochemical X-ray photoelectron spectroscopy (EC-XPS) to revisit the surface chemistry of WC powder electrodes in alkaline electrolyte in-situ and under full potential control. Our results show that although the surface is initially covered with oxide, this passive film dissolves in the electrolyte under electrochemical reaction conditions. This clarifies the active surface termination during the HER and highlights the potential of laboratory-based EC-XPS to study applied energy conversion materials.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"17 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202500965","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tungsten carbide (WC) is a renowned compound catalyst material for electrochemical water splitting, and its high electrocatalytic activity towards the hydrogen evolution reaction (HER) has been repeatedly reported. However, its susceptibility to oxidation raises the fundamental question of the underlying reason for its high activity, especially since passivation and thus potential deactivation can occur not only in air but also during reaction. Hence, the investigation of the surface chemistry under true operating conditions is crucial for a fundamental understanding of the electrocatalytic process. In this work we use electrochemical X-ray photoelectron spectroscopy (EC-XPS) to revisit the surface chemistry of WC powder electrodes in alkaline electrolyte in-situ and under full potential control. Our results show that although the surface is initially covered with oxide, this passive film dissolves in the electrolyte under electrochemical reaction conditions. This clarifies the active surface termination during the HER and highlights the potential of laboratory-based EC-XPS to study applied energy conversion materials.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.