Metabolism of CO and H2 by pioneer bacteria in volcanic soils and the phyllosphere

Nicola Fantom, Robin A Dawson, Edina Prondvai, Philippe Constant, Gary M King, Hendrik Schäfer, Marcela Hernández
{"title":"Metabolism of CO and H2 by pioneer bacteria in volcanic soils and the phyllosphere","authors":"Nicola Fantom, Robin A Dawson, Edina Prondvai, Philippe Constant, Gary M King, Hendrik Schäfer, Marcela Hernández","doi":"10.1093/ismejo/wraf053","DOIUrl":null,"url":null,"abstract":"Trace gas degradation is a widespread metabolic adaptation in microbial communities, driving chemosynthesis and providing auxiliary energy that enhances persistence during nutrient starvation. In particular, carbon monoxide and hydrogen degradation can be of crucial importance for pioneering microbial communities colonising new, oligotrophic environmental niches, such as fresh volcanic deposits or the aerial interface of the phyllosphere. After volcanic eruptions, trace gas metabolism helps pioneer colonisers to initiate soil formation in ash deposits and on recently solidified lava, a vital ecosystem service. Similarly, in the phyllosphere, bacteria colonising newly emerging leaves and shoots, and/or persisting on the oligotrophic surface of plants, also benefit from trace gas oxidation and, given the global size of this habitat, likely constitute a significant sink for these trace gases affecting atmospheric chemistry. Herein, we review the current state of knowledge surrounding microbial oxidation of carbon monoxide and hydrogen and discuss how this may contribute to niche colonisation in oligotrophic ecosystems.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Trace gas degradation is a widespread metabolic adaptation in microbial communities, driving chemosynthesis and providing auxiliary energy that enhances persistence during nutrient starvation. In particular, carbon monoxide and hydrogen degradation can be of crucial importance for pioneering microbial communities colonising new, oligotrophic environmental niches, such as fresh volcanic deposits or the aerial interface of the phyllosphere. After volcanic eruptions, trace gas metabolism helps pioneer colonisers to initiate soil formation in ash deposits and on recently solidified lava, a vital ecosystem service. Similarly, in the phyllosphere, bacteria colonising newly emerging leaves and shoots, and/or persisting on the oligotrophic surface of plants, also benefit from trace gas oxidation and, given the global size of this habitat, likely constitute a significant sink for these trace gases affecting atmospheric chemistry. Herein, we review the current state of knowledge surrounding microbial oxidation of carbon monoxide and hydrogen and discuss how this may contribute to niche colonisation in oligotrophic ecosystems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive responses of Trichlorobacter lovleyi to nitrite detoxification reveal overlooked contributions of Geobacterales to nitrate ammonification Long-term metagenomic insights into the roles of antiviral defense systems in stabilizing activated sludge bacterial communities Metabolism of CO and H2 by pioneer bacteria in volcanic soils and the phyllosphere Spatio-temporal pattern formation of living organisms at the edge of chaos Ecological and evolutionary responses of earthworm holobionts to environmental changes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1