Yousef A. Bin Jardan , Fadhel.F. Sead , Dharmesh Sur , Suhas Ballal , Abhayveer Singh , T. Krithiga , Aziz Kubaev , Subhashree Ray , Mounir M. Bekhit
{"title":"DFT study of pure and Pt-decorated BN nanocone as a nanocarrier for nitrosourea anticancer drug","authors":"Yousef A. Bin Jardan , Fadhel.F. Sead , Dharmesh Sur , Suhas Ballal , Abhayveer Singh , T. Krithiga , Aziz Kubaev , Subhashree Ray , Mounir M. Bekhit","doi":"10.1016/j.jmgm.2025.109018","DOIUrl":null,"url":null,"abstract":"<div><div>In this current study, the effectiveness of both the Pt-coated BN nanocone (BNC) and pristine in detecting and drug delivery of nitrosourea anticancer (NU) drugs were analyzed using periodic DFT. Research examines how the drug molecules adsorb and affect structural and electronic features of substrate. Analysis of interaction between NU and pure BNC surface, as suggested by the adsorption energy, reveals a relatively weak interaction. The adsorption energies in gas and water phases for the most stable NU@Pt-BNC complex are −1.88 eV and −2.89 eV, respectively. Study also investigated drug's ability to dissolve, along with that of surface and complexes, in an aqueous solvent. Additionally, simulations were conducted to model release of the drug from the substrate in close proximity to target cells within an acidic environment. A Pt-BNC substrate could be suggested as a promising carrier and sensor for NU anticancer medications.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"137 ","pages":"Article 109018"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326325000786","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In this current study, the effectiveness of both the Pt-coated BN nanocone (BNC) and pristine in detecting and drug delivery of nitrosourea anticancer (NU) drugs were analyzed using periodic DFT. Research examines how the drug molecules adsorb and affect structural and electronic features of substrate. Analysis of interaction between NU and pure BNC surface, as suggested by the adsorption energy, reveals a relatively weak interaction. The adsorption energies in gas and water phases for the most stable NU@Pt-BNC complex are −1.88 eV and −2.89 eV, respectively. Study also investigated drug's ability to dissolve, along with that of surface and complexes, in an aqueous solvent. Additionally, simulations were conducted to model release of the drug from the substrate in close proximity to target cells within an acidic environment. A Pt-BNC substrate could be suggested as a promising carrier and sensor for NU anticancer medications.
期刊介绍:
The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design.
As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.