Shock compression and spallation of polyamides 6 and 66

IF 7.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Mechanical Sciences Pub Date : 2025-03-14 DOI:10.1016/j.ijmecsci.2025.110127
R.C. Pan , B.X. Bie , Y. Cai , N.B. Zhang , L.Z. Chen , Y.X. Zhao , K. Li , H.W. Chai , L. Lu , S.N. Luo
{"title":"Shock compression and spallation of polyamides 6 and 66","authors":"R.C. Pan ,&nbsp;B.X. Bie ,&nbsp;Y. Cai ,&nbsp;N.B. Zhang ,&nbsp;L.Z. Chen ,&nbsp;Y.X. Zhao ,&nbsp;K. Li ,&nbsp;H.W. Chai ,&nbsp;L. Lu ,&nbsp;S.N. Luo","doi":"10.1016/j.ijmecsci.2025.110127","DOIUrl":null,"url":null,"abstract":"<div><div>Polyamide 6 (PA6) and polyamide 66 (PA66) are widely used engineering polymers for high-speed applications, and yet their behaviors under extreme impact loading remain unclear. We systematically investigate their dynamic responses through plate impact experiments, and measure their Hugoniot equations of state (shock adiabats) and free-surface velocity histories up to peak shock stress of <span><math><mo>∼</mo></math></span>1.6 GPa. The postmortem samples are characterized with synchrotron X-ray computed tomography. Quadratic and linear shock velocity–particle velocity relations are obtained for PA6 and PA66, respectively. Spall strength remains nearly constant for both PA6 and PA66 (approximately 0.18 GPa and 0.23 GPa, respectively) up to peak shock stress of 1.1 GPa. PA6 and PA66 demonstrate ductile and brittle fracture characteristics under high strain rate tension, respectively. The influences of chain conformations and hydrogen bond density on the dynamic mechanical properties and underlying damage mechanisms are elucidated. These differences in dynamic responses of PA6 and PA66 can be attributed to rearrangement and breakage of polymer chains, significantly influenced by varying hydrogen bond frequencies. This study contributes to understanding the connections between hydrogen bond density, chain conformation, and bulk mechanical properties in polyamides, and can be useful for advancing their applications in protective and structural materials.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"291 ","pages":"Article 110127"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740325002139","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polyamide 6 (PA6) and polyamide 66 (PA66) are widely used engineering polymers for high-speed applications, and yet their behaviors under extreme impact loading remain unclear. We systematically investigate their dynamic responses through plate impact experiments, and measure their Hugoniot equations of state (shock adiabats) and free-surface velocity histories up to peak shock stress of 1.6 GPa. The postmortem samples are characterized with synchrotron X-ray computed tomography. Quadratic and linear shock velocity–particle velocity relations are obtained for PA6 and PA66, respectively. Spall strength remains nearly constant for both PA6 and PA66 (approximately 0.18 GPa and 0.23 GPa, respectively) up to peak shock stress of 1.1 GPa. PA6 and PA66 demonstrate ductile and brittle fracture characteristics under high strain rate tension, respectively. The influences of chain conformations and hydrogen bond density on the dynamic mechanical properties and underlying damage mechanisms are elucidated. These differences in dynamic responses of PA6 and PA66 can be attributed to rearrangement and breakage of polymer chains, significantly influenced by varying hydrogen bond frequencies. This study contributes to understanding the connections between hydrogen bond density, chain conformation, and bulk mechanical properties in polyamides, and can be useful for advancing their applications in protective and structural materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Mechanical Sciences
International Journal of Mechanical Sciences 工程技术-工程:机械
CiteScore
12.80
自引率
17.80%
发文量
769
审稿时长
19 days
期刊介绍: The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering. The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture). Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content. In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.
期刊最新文献
Editorial Board Dual Hamiltonian transformation and magneto-electro-thermo-viscoelastic contact analysis Composite-airfoil-plate with embedded macro-fiber-composites: Aero-thermo-electro vibration analysis and active control Comprehensive thermoelastic stress-driven approach for thermo-mechanical-pressure multiphysics systems Tension and torsion distributions in tapered threaded connections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1