Siyi Qiu , Yuefei Wang , Zixu Wang , Jinyan Cao , Xi Yu
{"title":"Multi-view outlier detection based on multi-granularity fusion of fuzzy rough granules","authors":"Siyi Qiu , Yuefei Wang , Zixu Wang , Jinyan Cao , Xi Yu","doi":"10.1016/j.ijar.2025.109402","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, multi-view data has seen widespread application across various fields, presenting both opportunities and challenges due to its complex distribution across different views. Detecting outliers in such heterogeneous data has become a significant research problem. Existing multi-view outlier detection methods often rely on clustering assumptions, pairwise constraints between views, and a focus on learning consensus information, which overlook the inherent differences across views. To address the aforementioned issues, this paper proposes an outlier detection method based on the fusion of multi-granularity fuzzy rough information (MGFMOD). The method calculates a multi-granularity similarity matrix using fuzzy similarity relationships, combines similarity matrices from different granularities to form an upper approximation matrix, and constructs fused upper approximation granules to detect attribute anomalies. Neighbor domain probabilistic mapping is then employed to unify neighborhood relationships across views, allowing the analysis of both consistency and distribution differences to capture class outliers. Additionally, this paper employs a novel coarse-to-fine approximation method to construct the upper approximation matrix, further improving the accuracy of attribute outlier detection. Experimental results on multiple public datasets demonstrate that the proposed method generally outperforms existing multi-view outlier detection methods in terms of detection accuracy and robustness.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"181 ","pages":"Article 109402"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X2500043X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, multi-view data has seen widespread application across various fields, presenting both opportunities and challenges due to its complex distribution across different views. Detecting outliers in such heterogeneous data has become a significant research problem. Existing multi-view outlier detection methods often rely on clustering assumptions, pairwise constraints between views, and a focus on learning consensus information, which overlook the inherent differences across views. To address the aforementioned issues, this paper proposes an outlier detection method based on the fusion of multi-granularity fuzzy rough information (MGFMOD). The method calculates a multi-granularity similarity matrix using fuzzy similarity relationships, combines similarity matrices from different granularities to form an upper approximation matrix, and constructs fused upper approximation granules to detect attribute anomalies. Neighbor domain probabilistic mapping is then employed to unify neighborhood relationships across views, allowing the analysis of both consistency and distribution differences to capture class outliers. Additionally, this paper employs a novel coarse-to-fine approximation method to construct the upper approximation matrix, further improving the accuracy of attribute outlier detection. Experimental results on multiple public datasets demonstrate that the proposed method generally outperforms existing multi-view outlier detection methods in terms of detection accuracy and robustness.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.