{"title":"Navigating the brain: Harnessing endogenous cellular hitchhiking for targeting neoplastic and neuroinflammatory diseases","authors":"Suraj S. Wagh , Paras Famta , Saurabh Shah , Ganesh Vambhurkar , Giriraj Pandey , Anupama Sikder , Gurpreet Singh , Shalini Shukla , Abhishek Sharma , Sajja Bhanu Prasad , Akshay Shinde , Rahul Kumar , Nitin Pal Kalia , Rajeev Singh Raghuvanshi , Saurabh Srivastava","doi":"10.1016/j.ajps.2025.101040","DOIUrl":null,"url":null,"abstract":"<div><div>Cellular hitchhiking is an emerging therapeutic strategy that uses an endogenous cell migration mechanism to deliver therapeutics to specific sites in the body. Owing to the low permeability and presence of the blood-brain barrier (BBB), the targeted delivery of therapeutics is limited, leading to inadequate localization in the brain. NCs fail to extravasate significantly into the tumor microenvironment (TME), demonstrating poor accumulation and tumor penetration. The novel cellular hitchhiking concept has been utilized to promote systemic half-life and therapeutic targeting. Neoplastic and neuroinflammatory diseases of the brain, including glioblastoma and neuroinflammation, face critical hurdles for efficiently delivering therapeutic entities owing to the BBB. Cellular hitchhiking can surmount these hurdles by utilizing various cell populations, such as stem cells, monocytes/macrophages, neutrophils, and platelets, as potential functional carriers to deliver the therapeutic cargo through the BBB. These carrier cells have the innate capability to traverse the BBB, transit through the brain parenchyma, and specifically reach disease sites such as inflammatory and neoplastic lesions owing to chemotactic navigation, <em>i.e.</em>, movement attributed to chemical stimuli. Chemotherapeutic drugs delivered by cellular hitchhiking to achieve tumor-specific targeting have been discussed. This article explores various cell types for hitchhiking NCs to the TME with in-depth mechanisms and characterization techniques to decipher the backpack dissociation dynamics (nanoparticle payload detachment characteristics from hitchhiked cells) and challenges toward prospective clinical translation.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"20 2","pages":"Article 101040"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S181808762500025X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Cellular hitchhiking is an emerging therapeutic strategy that uses an endogenous cell migration mechanism to deliver therapeutics to specific sites in the body. Owing to the low permeability and presence of the blood-brain barrier (BBB), the targeted delivery of therapeutics is limited, leading to inadequate localization in the brain. NCs fail to extravasate significantly into the tumor microenvironment (TME), demonstrating poor accumulation and tumor penetration. The novel cellular hitchhiking concept has been utilized to promote systemic half-life and therapeutic targeting. Neoplastic and neuroinflammatory diseases of the brain, including glioblastoma and neuroinflammation, face critical hurdles for efficiently delivering therapeutic entities owing to the BBB. Cellular hitchhiking can surmount these hurdles by utilizing various cell populations, such as stem cells, monocytes/macrophages, neutrophils, and platelets, as potential functional carriers to deliver the therapeutic cargo through the BBB. These carrier cells have the innate capability to traverse the BBB, transit through the brain parenchyma, and specifically reach disease sites such as inflammatory and neoplastic lesions owing to chemotactic navigation, i.e., movement attributed to chemical stimuli. Chemotherapeutic drugs delivered by cellular hitchhiking to achieve tumor-specific targeting have been discussed. This article explores various cell types for hitchhiking NCs to the TME with in-depth mechanisms and characterization techniques to decipher the backpack dissociation dynamics (nanoparticle payload detachment characteristics from hitchhiked cells) and challenges toward prospective clinical translation.
期刊介绍:
The Asian Journal of Pharmaceutical Sciences (AJPS) serves as the official journal of the Asian Federation for Pharmaceutical Sciences (AFPS). Recognized by the Science Citation Index Expanded (SCIE), AJPS offers a platform for the reporting of advancements, production methodologies, technologies, initiatives, and the practical application of scientific knowledge in the field of pharmaceutics. The journal covers a wide range of topics including but not limited to controlled drug release systems, drug targeting, physical pharmacy, pharmacodynamics, pharmacokinetics, pharmacogenomics, biopharmaceutics, drug and prodrug design, pharmaceutical analysis, drug stability, quality control, pharmaceutical engineering, and material sciences.