Operando FT-IR and UV–vis spectroscopic studies emphasise the nature of coke species formed over SSZ-13 zeolite during ethanol-to-hydrocarbons process

IF 5.2 2区 化学 Q1 CHEMISTRY, APPLIED Catalysis Today Pub Date : 2025-03-12 DOI:10.1016/j.cattod.2025.115274
Karolina A. Tarach , Anna Walczyk , Agata Olszewska , Julia Sobalska , Oliwia Rogala , Kinga Góra-Marek
{"title":"Operando FT-IR and UV–vis spectroscopic studies emphasise the nature of coke species formed over SSZ-13 zeolite during ethanol-to-hydrocarbons process","authors":"Karolina A. Tarach ,&nbsp;Anna Walczyk ,&nbsp;Agata Olszewska ,&nbsp;Julia Sobalska ,&nbsp;Oliwia Rogala ,&nbsp;Kinga Góra-Marek","doi":"10.1016/j.cattod.2025.115274","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the conversion of ethanol to higher olefins using protonic chabazite (SSZ-13, SiAl = 8) zeolite, employing advanced FT-IR and UV–vis operando spectroscopic techniques, with concurrent mass spectrometry and gas chromatography examinations of the products. The utilisation of varying ethanol loads facilitates the examination of coke production and its progression relative to the feed quantity. The spectroscopic analysis clarifies the species formed on the catalyst's surface, while mass spectrometry and gas chromatography techniques verify the desorbed products. The counterparts in transforming ethanol and methanol to olefins via the recognised intermediates of the hydrocarbon pool mechanism are identified and examined in detail. Significant value-added information is obtained from in situ FT-IR studies complemented by mass spectrometry examination of the gas phase. The MCR-ALS analysis is utilised in spectroscopic operando investigations and offers significant insights into the findings. Furthermore, these investigations are substantiated by chromatographic examination of coke species obtained from spent catalysts.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"453 ","pages":"Article 115274"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586125000926","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the conversion of ethanol to higher olefins using protonic chabazite (SSZ-13, SiAl = 8) zeolite, employing advanced FT-IR and UV–vis operando spectroscopic techniques, with concurrent mass spectrometry and gas chromatography examinations of the products. The utilisation of varying ethanol loads facilitates the examination of coke production and its progression relative to the feed quantity. The spectroscopic analysis clarifies the species formed on the catalyst's surface, while mass spectrometry and gas chromatography techniques verify the desorbed products. The counterparts in transforming ethanol and methanol to olefins via the recognised intermediates of the hydrocarbon pool mechanism are identified and examined in detail. Significant value-added information is obtained from in situ FT-IR studies complemented by mass spectrometry examination of the gas phase. The MCR-ALS analysis is utilised in spectroscopic operando investigations and offers significant insights into the findings. Furthermore, these investigations are substantiated by chromatographic examination of coke species obtained from spent catalysts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
本研究采用先进的傅立叶变换红外光谱和紫外可见光操作光谱技术,同时对产品进行质谱分析和气相色谱分析,研究了使用质子霞石(SSZ-13,SiAl = 8)沸石将乙醇转化为高碳烯烃的过程。利用不同的乙醇载量可以检测焦炭的产生及其与进料量的关系。光谱分析明确了催化剂表面形成的物种,而质谱和气相色谱技术则验证了解吸产物。通过碳氢化合物池机理的公认中间体将乙醇和甲醇转化为烯烃的对应物得到了识别和详细研究。通过原位傅立叶变换红外光谱研究和气相质谱分析,可以获得重要的增值信息。MCR-ALS 分析被用于光谱操作研究,为研究结果提供了重要见解。此外,从废催化剂中获得的焦炭种类的色谱分析也证实了这些研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Catalysis Today
Catalysis Today 化学-工程:化工
CiteScore
11.50
自引率
3.80%
发文量
573
审稿时长
2.9 months
期刊介绍: Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues. Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.
期刊最新文献
The effect of catalyst particle size and temperature on CNT growth on supported Fe catalysts during methane pyrolysis Upgradation of hemicellulose-derived furfuryl alcohol to butyl levulinate by using magnetic acidic deep eutectic solvents as catalysts Editorial Board Synthesis of lanthanum oxide supported transition metal-based catalysts for clean hydrogen production: The role of reducibility Operando FT-IR and UV–vis spectroscopic studies emphasise the nature of coke species formed over SSZ-13 zeolite during ethanol-to-hydrocarbons process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1