{"title":"Prostaglandin E2 alleviates inflammatory response and lung injury through EP4/cAMP/IKK/NF-κB pathway","authors":"Yelin Tang , Weiting Pan , Wenting Ding , Xingye Pan , Junyi Zhu , Huiwen Chen , Xiaona Zhu , Jingyi Chen , Zijun Cheng , Yali Zhang , Bing Zhang","doi":"10.1016/j.bbadis.2025.167801","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>Prostaglandin E2 (PGE2), a pivotal lipid metabolite, plays a dual role in inflammation, manifesting both pro-inflammatory and anti-inflammatory effects, which are significantly influenced by the cellular microenvironment and receptor subtype. Although recent studies have highlighted the anti-inflammatory potential of PGE2, its role in toll-like receptor (TLR)-associated inflammation and the underlying mechanisms have not fully elucidated. Consequently, the primary aim of this study was to assess the anti-inflammatory efficacy of PGE2 in TLR-related inflammation and to elucidate the associated mechanisms.</div></div><div><h3>Methods</h3><div>In vitro, the anti-inflammatory effect of PGE2 on TLR-related inflammation were investigated by measuring pro-inflammatory cytokine protein and gene levels using ELISA and RT-qPCR, respectively. Western blot analysis was used to explore the corresponding anti-inflammatory signaling pathways. In vivo, the anti-inflammatory effects of PGE2 were further validated using ALI and sepsis models, employing the PGE2 analog 16,16-dimethyl prostaglandin E2 (dmPGE2).</div></div><div><h3>Results</h3><div>The findings revealed that PGE2 inhibited the LPS-induced inflammatory response and activation of the IKK/NF-κB signaling pathway via the EP4 receptor-mediated downstream cAMP/PKA pathway. Additionally, PGE2 analog, dmPGE2, effectively mitigated pathological injury and the inflammatory response in lung tissue of mice subjected to LPS-induced ALI and sepsis. Notably, dmPGE2 suppressed LPS-induced activation of the IKK/NF-κB signaling pathway in lung tissue.</div></div><div><h3>Conclusion</h3><div>This study demonstrated that PGE2 can inhibit the IKK/NF-κB signaling pathway through the EP4/cAMP/PKA pathway, thereby alleviating the LPS-induced inflammatory response and providing a protective effect against LPS-induced ALI and sepsis. Consequently, PGE2 holds promise as a candidate for drug development aimed at preventing ALI and sepsis.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 5","pages":"Article 167801"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443925001462","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Prostaglandin E2 (PGE2), a pivotal lipid metabolite, plays a dual role in inflammation, manifesting both pro-inflammatory and anti-inflammatory effects, which are significantly influenced by the cellular microenvironment and receptor subtype. Although recent studies have highlighted the anti-inflammatory potential of PGE2, its role in toll-like receptor (TLR)-associated inflammation and the underlying mechanisms have not fully elucidated. Consequently, the primary aim of this study was to assess the anti-inflammatory efficacy of PGE2 in TLR-related inflammation and to elucidate the associated mechanisms.
Methods
In vitro, the anti-inflammatory effect of PGE2 on TLR-related inflammation were investigated by measuring pro-inflammatory cytokine protein and gene levels using ELISA and RT-qPCR, respectively. Western blot analysis was used to explore the corresponding anti-inflammatory signaling pathways. In vivo, the anti-inflammatory effects of PGE2 were further validated using ALI and sepsis models, employing the PGE2 analog 16,16-dimethyl prostaglandin E2 (dmPGE2).
Results
The findings revealed that PGE2 inhibited the LPS-induced inflammatory response and activation of the IKK/NF-κB signaling pathway via the EP4 receptor-mediated downstream cAMP/PKA pathway. Additionally, PGE2 analog, dmPGE2, effectively mitigated pathological injury and the inflammatory response in lung tissue of mice subjected to LPS-induced ALI and sepsis. Notably, dmPGE2 suppressed LPS-induced activation of the IKK/NF-κB signaling pathway in lung tissue.
Conclusion
This study demonstrated that PGE2 can inhibit the IKK/NF-κB signaling pathway through the EP4/cAMP/PKA pathway, thereby alleviating the LPS-induced inflammatory response and providing a protective effect against LPS-induced ALI and sepsis. Consequently, PGE2 holds promise as a candidate for drug development aimed at preventing ALI and sepsis.
期刊介绍:
BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.