Investigating Disturbance-Induced Misoperation of Grid-Following Inverter-Based Resources

IF 2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Generation Transmission & Distribution Pub Date : 2025-03-18 DOI:10.1049/gtd2.70046
Negar Karimipour, Mohammadreza F. M. Arani, Amir Abiri Jahromi
{"title":"Investigating Disturbance-Induced Misoperation of Grid-Following Inverter-Based Resources","authors":"Negar Karimipour,&nbsp;Mohammadreza F. M. Arani,&nbsp;Amir Abiri Jahromi","doi":"10.1049/gtd2.70046","DOIUrl":null,"url":null,"abstract":"<p>The rapid integration of grid-following inverter-based resources (GFL-IBRs) has increased the importance of their dynamic behaviour during disturbances. Simultaneously, there are increasing number of reports about the misoperation or inadvertent disconnection of GFL-IBRs during disturbances. This paper attempts to shed light on one of the potential root causes of disturbance-induced misoperations of GFL-IBRs. A framework is presented to quantify voltage drop and voltage phase angle jump that appear at the terminals of GFL-IBRs immediately after the inception of various events in the grid such as faults, and tripping of generators and transmission lines. We demonstrate voltage drop and voltage phase angle jump in the upstream grid due to various disturbances may transform into severe voltage drop and voltage phase angle jump at the terminals of GFL-IBRs. The combination of voltage drop and voltage phase angle jump that appear at the terminals of GFL-IBRs is identified as one of the root causes of their misoperation. Therefore, system-wide studies are required to evaluate the dynamic performance of GFL-IBRs rather than sole compliance with standards. The importance of system-wide studies is demonstrated through IEEE 39-bus test system. The impact of voltage drop and voltage phase angle jump in the upstream grid on the dynamic performance of GFL-IBRs is demonstrated using electromagnetic transient studies.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.70046","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.70046","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid integration of grid-following inverter-based resources (GFL-IBRs) has increased the importance of their dynamic behaviour during disturbances. Simultaneously, there are increasing number of reports about the misoperation or inadvertent disconnection of GFL-IBRs during disturbances. This paper attempts to shed light on one of the potential root causes of disturbance-induced misoperations of GFL-IBRs. A framework is presented to quantify voltage drop and voltage phase angle jump that appear at the terminals of GFL-IBRs immediately after the inception of various events in the grid such as faults, and tripping of generators and transmission lines. We demonstrate voltage drop and voltage phase angle jump in the upstream grid due to various disturbances may transform into severe voltage drop and voltage phase angle jump at the terminals of GFL-IBRs. The combination of voltage drop and voltage phase angle jump that appear at the terminals of GFL-IBRs is identified as one of the root causes of their misoperation. Therefore, system-wide studies are required to evaluate the dynamic performance of GFL-IBRs rather than sole compliance with standards. The importance of system-wide studies is demonstrated through IEEE 39-bus test system. The impact of voltage drop and voltage phase angle jump in the upstream grid on the dynamic performance of GFL-IBRs is demonstrated using electromagnetic transient studies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
期刊最新文献
GAT-OPF: Robust and Scalable Topology Analysis in AC Optimal Power Flow With Graph Attention Networks Investigating Disturbance-Induced Misoperation of Grid-Following Inverter-Based Resources A Physics-Data Driven Approach for Identifying Leakage Users in Low-Voltage Distribution Systems Blind Source Separation in Sustainable Energy Systems Using Free Component Analysis Considering Power-usage Interdependence RETRACTION: Cross-country high impedance fault diagnosis scheme for unbalanced distribution network employing detrended cross-correlation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1