{"title":"Pathological Mechanisms of Irradiation-Induced Neurological Deficits in the Developing Brain","authors":"Seidu A. Richard","doi":"10.1111/ejn.70070","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cranial irradiation or radiotherapy (CRT) is one of the essential therapeutic modalities for central nervous system (CNS) tumors, and its efficacy is well known. Nevertheless, CRT is also associated with brain damages such as focal cerebral necrosis, neuroinflammation, cerebral microvascular anomalies, neurocognitive dysfunction, and hormone deficiencies in children. Children's brains are much more sensitive to CRT compared to the adult's brains. Thus, children's brains are also more likely to develop long-term CRT complication, which severely lessens their long-term quality of life after treatment. CRT to the juvenile rat led to a retardation of growth of the cerebellum; both the gray and white matter and neurogenic regions like the subventricular zone and the dentate gyrus in the hippocampus were predominantly vulnerable to CRT. Also, CRT-induced cognitive changes typically manifested as deficits in hippocampal-related functions of learning as well as memory, such as spatial information processing. Fractionated CRT–stimulated cognitive decline and hormone deficiencies were precisely associated with augmented neuronal cell death, blockade of neurogenesis, and stimulation of astrocytes and microglia. Thus, the aim of this review is to highlight the pathological mechanism of CRT-induced neurological deficits in the developing brain.</p>\n </div>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"61 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejn.70070","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cranial irradiation or radiotherapy (CRT) is one of the essential therapeutic modalities for central nervous system (CNS) tumors, and its efficacy is well known. Nevertheless, CRT is also associated with brain damages such as focal cerebral necrosis, neuroinflammation, cerebral microvascular anomalies, neurocognitive dysfunction, and hormone deficiencies in children. Children's brains are much more sensitive to CRT compared to the adult's brains. Thus, children's brains are also more likely to develop long-term CRT complication, which severely lessens their long-term quality of life after treatment. CRT to the juvenile rat led to a retardation of growth of the cerebellum; both the gray and white matter and neurogenic regions like the subventricular zone and the dentate gyrus in the hippocampus were predominantly vulnerable to CRT. Also, CRT-induced cognitive changes typically manifested as deficits in hippocampal-related functions of learning as well as memory, such as spatial information processing. Fractionated CRT–stimulated cognitive decline and hormone deficiencies were precisely associated with augmented neuronal cell death, blockade of neurogenesis, and stimulation of astrocytes and microglia. Thus, the aim of this review is to highlight the pathological mechanism of CRT-induced neurological deficits in the developing brain.
期刊介绍:
EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.