Farzan Niknejad Mazandarani, Paul Babyn, Javad Alirezaie
{"title":"A Time-Adaptive Diffusion-Based CT Image Denoising Method by Processing Directional and Non-Local Information","authors":"Farzan Niknejad Mazandarani, Paul Babyn, Javad Alirezaie","doi":"10.1002/ima.70067","DOIUrl":null,"url":null,"abstract":"<p>Low-dose computed tomography (CT) images are prone to noise and artifacts caused by photon starvation and electronic noise. Recently, researchers have explored the use of transformer-based neural networks combined with generative diffusion models, showing promising results in denoising CT images. Despite their high performance, these approaches often struggle to process crucial information in the input data, resulting in suboptimal image quality. To address this limitation, we propose Starformer, a novel transformer-based operation designed to extract non-local directional features essential for diagnostic accuracy while maintaining an acceptable computational complexity overhead. Starformer is seamlessly integrated into the time-adaptive schedules of a diffusion model, dynamically balancing global structural extraction and fine texture refinement throughout the diffusion process. This enables the generation of high-quality, realistic textures in the final denoised images. Extensive experimental results demonstrate the effectiveness of both approaches in enhancing CT image quality, with improvements of up to 15% in PSNR and 36% in SSIM, highlighting their superiority over state-of-the-art methods.</p>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ima.70067","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70067","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Low-dose computed tomography (CT) images are prone to noise and artifacts caused by photon starvation and electronic noise. Recently, researchers have explored the use of transformer-based neural networks combined with generative diffusion models, showing promising results in denoising CT images. Despite their high performance, these approaches often struggle to process crucial information in the input data, resulting in suboptimal image quality. To address this limitation, we propose Starformer, a novel transformer-based operation designed to extract non-local directional features essential for diagnostic accuracy while maintaining an acceptable computational complexity overhead. Starformer is seamlessly integrated into the time-adaptive schedules of a diffusion model, dynamically balancing global structural extraction and fine texture refinement throughout the diffusion process. This enables the generation of high-quality, realistic textures in the final denoised images. Extensive experimental results demonstrate the effectiveness of both approaches in enhancing CT image quality, with improvements of up to 15% in PSNR and 36% in SSIM, highlighting their superiority over state-of-the-art methods.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.