Optimizing fractionation schedules for de-escalation radiotherapy in head and neck cancers using deep reinforcement learning

IF 4.9 1区 医学 Q1 ONCOLOGY Radiotherapy and Oncology Pub Date : 2025-03-14 DOI:10.1016/j.radonc.2025.110833
Yongheng Yan , Xin Sun , Yuanhua Chen , Zihan Sun , SenXiang Yan , Zhongjie Lu , Feng Zhao
{"title":"Optimizing fractionation schedules for de-escalation radiotherapy in head and neck cancers using deep reinforcement learning","authors":"Yongheng Yan ,&nbsp;Xin Sun ,&nbsp;Yuanhua Chen ,&nbsp;Zihan Sun ,&nbsp;SenXiang Yan ,&nbsp;Zhongjie Lu ,&nbsp;Feng Zhao","doi":"10.1016/j.radonc.2025.110833","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>: Patients with locally-advanced head and neck squamous cell carcinomas (HNSCCs), particularly those related to human papillomavirus (HPV), often achieve good locoregional control (LRC), yet they suffer significant toxicities from standard chemoradiotherapy. This study aims to optimize the daily dose fractionation based on individual responses to radiotherapy (RT), minimizing toxicity while maintaining a low risk of LRC failure.</div></div><div><h3>Method:</h3><div>A virtual environment was developed to simulate tumor dynamics under RT for optimizing dose schedules. Patients predicted to maintain LRC were selected for de-escalation experiments. The proliferation saturation index (PSI) and linear-quadratic model were used to predict responses. A deep reinforcement learning (DRL) agent optimized fractionation schemes by interacting with the simulation environment, aiming to reduce the OAR’s biologically effective dose (BED) while preserving LRC. The impact of model uncertainty was analyzed and a support vector machine (SVM) model was used to segment parameter space and identify patients more robust to noise.</div></div><div><h3>Results:</h3><div>Personalized de-escalation plans were compared to conventional RT in a cohort of 5000 virtual patients. Personalized fractionation reduced the tumor dose and OAR’s BED by 29%, with an average OAR BED reduction of 5.61 ± 2.96 Gy. Prognostic outcomes were nearly identical, with 99.80% of patients in the low-risk LRC failure group. Model uncertainty impacted dosimetric indicators and prognosis, but the high-BED benefit group showed greater robustness to noise. SVM decision boundaries defined parameters range for patient selection.</div></div><div><h3>Conclusion:</h3><div>Optimizing fractionated doses based on patient responses minimizes toxicity while maintaining LRC in HNSCCs. Stratifying patients can mitigate model uncertainty and reduce treatment risks.</div></div>","PeriodicalId":21041,"journal":{"name":"Radiotherapy and Oncology","volume":"207 ","pages":"Article 110833"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiotherapy and Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167814025001288","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

: Patients with locally-advanced head and neck squamous cell carcinomas (HNSCCs), particularly those related to human papillomavirus (HPV), often achieve good locoregional control (LRC), yet they suffer significant toxicities from standard chemoradiotherapy. This study aims to optimize the daily dose fractionation based on individual responses to radiotherapy (RT), minimizing toxicity while maintaining a low risk of LRC failure.

Method:

A virtual environment was developed to simulate tumor dynamics under RT for optimizing dose schedules. Patients predicted to maintain LRC were selected for de-escalation experiments. The proliferation saturation index (PSI) and linear-quadratic model were used to predict responses. A deep reinforcement learning (DRL) agent optimized fractionation schemes by interacting with the simulation environment, aiming to reduce the OAR’s biologically effective dose (BED) while preserving LRC. The impact of model uncertainty was analyzed and a support vector machine (SVM) model was used to segment parameter space and identify patients more robust to noise.

Results:

Personalized de-escalation plans were compared to conventional RT in a cohort of 5000 virtual patients. Personalized fractionation reduced the tumor dose and OAR’s BED by 29%, with an average OAR BED reduction of 5.61 ± 2.96 Gy. Prognostic outcomes were nearly identical, with 99.80% of patients in the low-risk LRC failure group. Model uncertainty impacted dosimetric indicators and prognosis, but the high-BED benefit group showed greater robustness to noise. SVM decision boundaries defined parameters range for patient selection.

Conclusion:

Optimizing fractionated doses based on patient responses minimizes toxicity while maintaining LRC in HNSCCs. Stratifying patients can mitigate model uncertainty and reduce treatment risks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度强化学习优化头颈部癌症降级放疗的分次计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Radiotherapy and Oncology
Radiotherapy and Oncology 医学-核医学
CiteScore
10.30
自引率
10.50%
发文量
2445
审稿时长
45 days
期刊介绍: Radiotherapy and Oncology publishes papers describing original research as well as review articles. It covers areas of interest relating to radiation oncology. This includes: clinical radiotherapy, combined modality treatment, translational studies, epidemiological outcomes, imaging, dosimetry, and radiation therapy planning, experimental work in radiobiology, chemobiology, hyperthermia and tumour biology, as well as data science in radiation oncology and physics aspects relevant to oncology.Papers on more general aspects of interest to the radiation oncologist including chemotherapy, surgery and immunology are also published.
期刊最新文献
Linear energy transfer optimized proton therapy for rectal cancer. Early toxicity of moderately hypofractionated radiation therapy in breast cancer patients receiving locoregional irradiation: First results of the UNICANCER HypoG-01 phase III trial. Clinical feasibility of treatment planning on a diagnostic CT scan without or with single fraction plan adaptation in patients with stage II/III rectal cancer Comments on “Analysis of patients with locally advanced rectal cancer given neoadjuvant radiochemotherapy with or without RT dose intensification: A multicenter retrospective study − ATLANTIS part I” Longitudinal analysis of cognitive function in patients treated with postoperative radiotherapy for grade 2 and 3 IDH mutant diffuse glioma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1