Jingwen Liu, Blesson M Varghese, Alana Hansen, Keith Dear, Timothy Driscoll, Ying Zhang, Geoffrey Morgan, Vanessa Prescott, Vergil Dolar, Michelle Gourley, Anthony Capon, Peng Bi
{"title":"High temperature and cardiovascular disease in Australia under different climatic, demographic, and adaptive scenarios.","authors":"Jingwen Liu, Blesson M Varghese, Alana Hansen, Keith Dear, Timothy Driscoll, Ying Zhang, Geoffrey Morgan, Vanessa Prescott, Vergil Dolar, Michelle Gourley, Anthony Capon, Peng Bi","doi":"10.1093/eurheartj/ehaf117","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Cardiovascular disease (CVD), the leading cause of death globally and in Australia, is sensitive to heat exposure. This study assesses the burden of CVD attributable to high temperatures across Australia and projects future burden in the context of climate change.</p><p><strong>Methods: </strong>Disability-adjusted life years for CVD, including years of life lost and years lived with disability, were sourced from the Australian Burden of Disease database. A meta-regression model was constructed using location-specific predictors and relative risks from prior literature to estimate relative risks of CVD mortality and morbidity due to high temperatures in the Australian context. The baseline CVD burden attributable to high temperatures in Australia for 2003-18 was calculated, and future burdens under two greenhouse gas emissions scenarios [Representative Concentration Pathways (RCP4.5 and RCP8.5)] for the 2030s and 2050s were projected, considering demographic changes and human adaptation.</p><p><strong>Results: </strong>During the baseline period, high temperatures accounted for 7.3% (95% confidence interval: 7.0%-7.6%) of the CVD burden in Australia, equivalent to 223.8 Disability-adjusted life years (95% confidence interval: 221.0-226.6) per 100 000 population. Future projections suggest a steady increase in the CVD burden across all scenarios examined. By the 2050s, under the RCP8.5 scenario that considers population growth and no adaptation, the total attributable burden of CVD is projected to more than double compared with the baseline, with the Northern Territory facing the most significant increase. These impacts could be mitigated with effective human adaptation to the warming climate.</p><p><strong>Conclusions: </strong>Higher temperatures are expected to exacerbate the burden of CVD. This study highlights the need for urgent adaptation and mitigation efforts to minimize the negative health impacts of a warming climate on CVD.</p>","PeriodicalId":11976,"journal":{"name":"European Heart Journal","volume":" ","pages":""},"PeriodicalIF":37.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Heart Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/eurheartj/ehaf117","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims: Cardiovascular disease (CVD), the leading cause of death globally and in Australia, is sensitive to heat exposure. This study assesses the burden of CVD attributable to high temperatures across Australia and projects future burden in the context of climate change.
Methods: Disability-adjusted life years for CVD, including years of life lost and years lived with disability, were sourced from the Australian Burden of Disease database. A meta-regression model was constructed using location-specific predictors and relative risks from prior literature to estimate relative risks of CVD mortality and morbidity due to high temperatures in the Australian context. The baseline CVD burden attributable to high temperatures in Australia for 2003-18 was calculated, and future burdens under two greenhouse gas emissions scenarios [Representative Concentration Pathways (RCP4.5 and RCP8.5)] for the 2030s and 2050s were projected, considering demographic changes and human adaptation.
Results: During the baseline period, high temperatures accounted for 7.3% (95% confidence interval: 7.0%-7.6%) of the CVD burden in Australia, equivalent to 223.8 Disability-adjusted life years (95% confidence interval: 221.0-226.6) per 100 000 population. Future projections suggest a steady increase in the CVD burden across all scenarios examined. By the 2050s, under the RCP8.5 scenario that considers population growth and no adaptation, the total attributable burden of CVD is projected to more than double compared with the baseline, with the Northern Territory facing the most significant increase. These impacts could be mitigated with effective human adaptation to the warming climate.
Conclusions: Higher temperatures are expected to exacerbate the burden of CVD. This study highlights the need for urgent adaptation and mitigation efforts to minimize the negative health impacts of a warming climate on CVD.
期刊介绍:
The European Heart Journal is a renowned international journal that focuses on cardiovascular medicine. It is published weekly and is the official journal of the European Society of Cardiology. This peer-reviewed journal is committed to publishing high-quality clinical and scientific material pertaining to all aspects of cardiovascular medicine. It covers a diverse range of topics including research findings, technical evaluations, and reviews. Moreover, the journal serves as a platform for the exchange of information and discussions on various aspects of cardiovascular medicine, including educational matters.
In addition to original papers on cardiovascular medicine and surgery, the European Heart Journal also presents reviews, clinical perspectives, ESC Guidelines, and editorial articles that highlight recent advancements in cardiology. Additionally, the journal actively encourages readers to share their thoughts and opinions through correspondence.