Hybrid membranes-mediated biomimetic-nanoparticle carrying miR-665 for effective tumor treatment by remodeling tumor microenvironment.

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY International Journal of Pharmaceutics Pub Date : 2025-03-14 DOI:10.1016/j.ijpharm.2025.125479
Bo Zhang, Chi Zhang, Cao Chen, Ru Hong, Yongping Shen, Chen Yao, Jie Sun, Yafeng Zhang
{"title":"Hybrid membranes-mediated biomimetic-nanoparticle carrying miR-665 for effective tumor treatment by remodeling tumor microenvironment.","authors":"Bo Zhang, Chi Zhang, Cao Chen, Ru Hong, Yongping Shen, Chen Yao, Jie Sun, Yafeng Zhang","doi":"10.1016/j.ijpharm.2025.125479","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Osteosarcomas (OS) are malignant bone tumors prevalent in adolescents, characterized by aggressiveness and early metastasis. Current treatments including surgery and chemotherapy face challenges due to drug limitations and the complex tumor microenvironment (TME).</p><p><strong>Methods: </strong>Tumour membranes (TM) derived from OS cells and macrophage membranes (MM) derived from macrophages were mixed to create hybrid membranes (HM), which were subsequently used to encapsulate microRNA-665(miR-665)-loaded Poly lactic-co-glycolic acid (PLGA) nanoparticles, forming HM@PLGA/miR-665 complexes. In vitro characterization included physical properties, colocalization studies, and assessment of macrophage polarization. In vivo experiments involved a nude mouse model to evaluate tumor targeting, biosafety, and therapeutic efficacy.</p><p><strong>Results: </strong>The HM@PLGA/miR-665 complexes exhibited good physical characteristics and stability. In vitro, the complexes significantly altered the M1/M2 macrophage ratio, promoting M1 polarization and inhibiting M2 polarization. Macrophage supernatants from HM@PLGA/miR-665-treated cells inhibited proliferation, migration, and induced apoptosis in MG-63 osteosarcoma cells. In vivo, the complexes effectively targeted tumor tissues, showed good biosafety, and significantly inhibited OS progression, promoting tumor cell apoptosis and altering the M1/M2 macrophage ratio.</p><p><strong>Conclusion: </strong>The HM@PLGA/miR-665 delivery system successfully targeted OS by modulating macrophages in the TME, exhibiting potential as a novel therapeutic strategy for OS.</p>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":" ","pages":"125479"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijpharm.2025.125479","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Osteosarcomas (OS) are malignant bone tumors prevalent in adolescents, characterized by aggressiveness and early metastasis. Current treatments including surgery and chemotherapy face challenges due to drug limitations and the complex tumor microenvironment (TME).

Methods: Tumour membranes (TM) derived from OS cells and macrophage membranes (MM) derived from macrophages were mixed to create hybrid membranes (HM), which were subsequently used to encapsulate microRNA-665(miR-665)-loaded Poly lactic-co-glycolic acid (PLGA) nanoparticles, forming HM@PLGA/miR-665 complexes. In vitro characterization included physical properties, colocalization studies, and assessment of macrophage polarization. In vivo experiments involved a nude mouse model to evaluate tumor targeting, biosafety, and therapeutic efficacy.

Results: The HM@PLGA/miR-665 complexes exhibited good physical characteristics and stability. In vitro, the complexes significantly altered the M1/M2 macrophage ratio, promoting M1 polarization and inhibiting M2 polarization. Macrophage supernatants from HM@PLGA/miR-665-treated cells inhibited proliferation, migration, and induced apoptosis in MG-63 osteosarcoma cells. In vivo, the complexes effectively targeted tumor tissues, showed good biosafety, and significantly inhibited OS progression, promoting tumor cell apoptosis and altering the M1/M2 macrophage ratio.

Conclusion: The HM@PLGA/miR-665 delivery system successfully targeted OS by modulating macrophages in the TME, exhibiting potential as a novel therapeutic strategy for OS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
期刊最新文献
Multifunctional sorafenib-loaded MXene for enhanced cancer therapy: In vitro and in vivo study based on chemotherapy/photothermal therapy approach. Cancer cell membrane-coated sulindac-ortho ester nanoprodrug for inhibiting COX-2 expression and chemo-photothermal synergistic antitumor therapy. Hurdles to healing: Overcoming cellular barriers for viral and nonviral gene therapy. Stability of intravenous antibody dilutions in clinical use: Differences across patient populations with varying body weights. Enhanced antibacterial efficacy of new benzothiazole phthalimide hybrid compounds/methyl-β-cyclodextrin inclusion complexes compared to the free forms: Insights into the possible mode of action
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1