Miniature origami robot for various biological micromanipulations

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-03-17 DOI:10.1038/s41467-025-57815-5
Bo Feng, Yide Liu, Jiahang Zhang, Shaoxing Qu, Wei Yang
{"title":"Miniature origami robot for various biological micromanipulations","authors":"Bo Feng, Yide Liu, Jiahang Zhang, Shaoxing Qu, Wei Yang","doi":"10.1038/s41467-025-57815-5","DOIUrl":null,"url":null,"abstract":"<p>Robotic micromanipulation is widely applied in biological research and medical procedures, providing a level of operational precision and stability beyond human capability. Compared with traditional micromanipulators that require assembly from many parts, origami manipulators offer advantages such as small size, lightweight, cost-effectiveness, and scalability. However, there are still requirements in biological application to address regarding stiffness, precision, and dexterity. Achieving a compact and functional parallel mechanism through origami structures remains a challenging problem. Here, we present the Micro-X4, a 4-Degree-of-Freedom (4-DoF) origami micromanipulator, which offers a workspace of 756 mm<sup><b>3</b></sup>, with a precision of 346 nm and a stiffness of 2738 N/m. We conduct a series of micromanipulation tasks, ranging from the tissue scale to the subcellular scale, including pattern cutting, cell positioning and puncturing, as well as cell cutting and insertion. Contact force measurement is further integrated to demonstrate precise control over cell operations and puncturing. We envision the Micro-X4 as the foundation for the next generation of lightweight and compact micromanipulation devices.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"27 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57815-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Robotic micromanipulation is widely applied in biological research and medical procedures, providing a level of operational precision and stability beyond human capability. Compared with traditional micromanipulators that require assembly from many parts, origami manipulators offer advantages such as small size, lightweight, cost-effectiveness, and scalability. However, there are still requirements in biological application to address regarding stiffness, precision, and dexterity. Achieving a compact and functional parallel mechanism through origami structures remains a challenging problem. Here, we present the Micro-X4, a 4-Degree-of-Freedom (4-DoF) origami micromanipulator, which offers a workspace of 756 mm3, with a precision of 346 nm and a stiffness of 2738 N/m. We conduct a series of micromanipulation tasks, ranging from the tissue scale to the subcellular scale, including pattern cutting, cell positioning and puncturing, as well as cell cutting and insertion. Contact force measurement is further integrated to demonstrate precise control over cell operations and puncturing. We envision the Micro-X4 as the foundation for the next generation of lightweight and compact micromanipulation devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于各种生物显微操作的微型折纸机器人
机器人显微操作广泛应用于生物研究和医疗程序,提供了超出人类能力的操作精度和稳定性。与传统的需要由许多部件组装而成的微机械臂相比,折纸机械臂具有体积小、重量轻、性价比高、可扩展性强等优点。然而,在生物应用中仍然需要解决关于刚度、精度和灵巧性的问题。通过折纸结构实现紧凑和功能的并联机构仍然是一个具有挑战性的问题。在这里,我们展示了Micro-X4,一个4自由度(4-DoF)折纸微机械臂,其工作空间为756 mm3,精度为346nm,刚度为2738 N/m。我们进行了一系列的显微操作任务,从组织尺度到亚细胞尺度,包括模式切割,细胞定位和穿刺,以及细胞切割和插入。接触力测量进一步集成,以展示对细胞操作和穿刺的精确控制。我们将Micro-X4设想为下一代轻量级和紧凑型微操作设备的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Breaking dense integration limits: inverse-designed lithium niobate multimode photonic circuits. Chromatin remodeling factor BAF155 coordinates oligodendroglial-neuronal communications linked to regional myelination and autism-like behavioral deficits in mice Targeted antisense oligonucleotide treatment rescues developmental alterations in spinal muscular atrophy organoids TMEM120A maintains adipose tissue lipid homeostasis through ER CoA channeling HIF-1α-mediated feedback prevents TOR signalling from depleting oxygen supply and triggering stress during normal development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1