A Prestack Elastic Parameter Seismic Inversion Method Based on xLSTM-Unet

IF 8.6 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Geoscience and Remote Sensing Pub Date : 2025-03-17 DOI:10.1109/TGRS.2025.3551769
Chuhan Zheng;Xingye Liu;Pengqi Wang;Qingchun Li;Feifan He
{"title":"A Prestack Elastic Parameter Seismic Inversion Method Based on xLSTM-Unet","authors":"Chuhan Zheng;Xingye Liu;Pengqi Wang;Qingchun Li;Feifan He","doi":"10.1109/TGRS.2025.3551769","DOIUrl":null,"url":null,"abstract":"Prestack seismic data retain the amplitude variation with offset (AVO) characteristics, providing more geophysical information reflecting lateral reservoir variations, thus facilitating the identification of oil and gas reservoirs. However, due to the band-limited nature of seismic data, the precision of forward modeling, and the accuracy of algorithms, traditional prestack approaches suffer from ambiguity and uncertainty. With the development of deep learning and big data, an increasing number of deep learning methods have been proposed. We integrate the extended long short-term memory (xLSTM) modules with the Unet framework, and design a novel neural network architecture, that is, xLSTM-Unet, for elastic parameter inversion (<inline-formula> <tex-math>$V_{\\text {P}}$ </tex-math></inline-formula>, <inline-formula> <tex-math>$V_{\\text {S}} $ </tex-math></inline-formula>, and <inline-formula> <tex-math>$\\rho $ </tex-math></inline-formula>) from prestack seismic gathers. Through testing on synthetic seismic records and field data, the proposed xLSTM-Unet outperforms both the traditional Unet and LSTM-Unet models in predicting elastic parameters from prestack seismic data. The xLSTM-Unet proposed in this article provides a stable and effective approach for predicting prestack elastic parameters, offering new insights for the intelligent development of seismic exploration.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"63 ","pages":"1-13"},"PeriodicalIF":8.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10929029/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Prestack seismic data retain the amplitude variation with offset (AVO) characteristics, providing more geophysical information reflecting lateral reservoir variations, thus facilitating the identification of oil and gas reservoirs. However, due to the band-limited nature of seismic data, the precision of forward modeling, and the accuracy of algorithms, traditional prestack approaches suffer from ambiguity and uncertainty. With the development of deep learning and big data, an increasing number of deep learning methods have been proposed. We integrate the extended long short-term memory (xLSTM) modules with the Unet framework, and design a novel neural network architecture, that is, xLSTM-Unet, for elastic parameter inversion ( $V_{\text {P}}$ , $V_{\text {S}} $ , and $\rho $ ) from prestack seismic gathers. Through testing on synthetic seismic records and field data, the proposed xLSTM-Unet outperforms both the traditional Unet and LSTM-Unet models in predicting elastic parameters from prestack seismic data. The xLSTM-Unet proposed in this article provides a stable and effective approach for predicting prestack elastic parameters, offering new insights for the intelligent development of seismic exploration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于xLSTM-Unet的叠前弹性参数地震反演方法
叠前地震数据保留了带偏移量的振幅变化特征,提供了更多反映储层横向变化的地球物理信息,有利于油气储层的识别。然而,由于地震数据的频带限制、正演模拟的精度和算法的准确性,传统的叠前方法存在模糊性和不确定性。随着深度学习和大数据的发展,越来越多的深度学习方法被提出。将扩展长短期记忆(xLSTM)模块与Unet框架相结合,设计了一种新的神经网络体系结构xLSTM-Unet,用于反演叠前地震资料的弹性参数($V_{\text {P}}$、$V_{\text {S}} $和$\rho $)。通过对合成地震记录和现场数据的测试,所提出的xLSTM-Unet模型在叠前地震数据弹性参数预测方面优于传统Unet模型和LSTM-Unet模型。本文提出的xLSTM-Unet为叠前弹性参数预测提供了一种稳定有效的方法,为地震勘探的智能化发展提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
期刊最新文献
HAM-CD: Hybrid Attention Mamba for Remote Sensing Change Detection Land Surface Temperature End-to-end Retrieval from Fengyun-4B AGRI Thermal Infrared Remote Sensing Data Considering the Emissivity Angular Effect PointCleaner: Dynamic Manifold Path Optimization for LiDAR Point Cloud Denoising See Hidden Insight From Transposition: Multi-Axis Feature Aggregation for Aerial Object Detection Harmonic-Assisted TDOA Localization Method for Saturation Interference Sources in SAR Satellite Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1