Discovery of mannose as an alternative non-nutrient-deficient regulator of lipid accumulation in microalgae

IF 11.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Journal of Advanced Research Pub Date : 2025-03-18 DOI:10.1016/j.jare.2025.03.019
Pengyang Liu, Yuanhang Ai, Muzi Li, Jiacheng Shi, Ning Xiao, Xiaoyu Zhang, Hongbo Yu, Fuying Ma, Su Sun, Shangxian Xie
{"title":"Discovery of mannose as an alternative non-nutrient-deficient regulator of lipid accumulation in microalgae","authors":"Pengyang Liu, Yuanhang Ai, Muzi Li, Jiacheng Shi, Ning Xiao, Xiaoyu Zhang, Hongbo Yu, Fuying Ma, Su Sun, Shangxian Xie","doi":"10.1016/j.jare.2025.03.019","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>Microalgae are considered promising bioenergy producers, but their commercial potential is limited by low lipid yields. Nutrient deprivation, particularly nitrogen starvation, is a primary strategy to enhance lipid synthesis efficiency in microalgae. However, controlling this process flexibly, effectively, and accurately remains challenging. Moreover, nutrient deficiency triggers expression changes of numerous genes, complicating the identification of key lipid biosynthesis regulators.<h3>Objectives</h3>For the first time, we investigated mannose as a novel non-nutrient-deficient regulator of lipid accumulation in microalgae and explored its potential underlying mechanisms.<h3>Methods</h3>We examined how mannose induction affects<!-- --> <!-- -->lipid accumulation in <em>Chlorella sorokiniana</em> W1 under various culture conditions and compared its effects with nitrogen-starvation. Transcriptome analysis and genome-scale metabolic modeling were used to elucidate the regulatory mechanisms underlying mannose-induced lipid synthesis. Additionally, potential transcription factors were identified using weighted gene co-expression network analysis.<h3>Results</h3>Mannose drives rapid and sustained lipid accumulation in <em>C. sorokiniana</em> under various cultivation conditions, independent of nutrient deficiencies. Under autotrophic conditions, mannose increased lipid content of microalgae by 80.1 %. Notably, mannose was not consumed during cultivation, supporting its role as an inducer. Transcriptomic analysis revealed that mannose increased carbon flux by upregulating genes associated with the Calvin cycle, glycolysis, the TCA cycle, and starch degradation. It also redirected carbon towards lipid accumulation by upregulating lipid synthesis pathways and downregulating lipid degradation pathways. Additionally, two SBP1 transcription factors specifically responsive to mannose were identified and may regulate carbon metabolism in microalgae.<h3>Conclusion</h3>Our study introduces mannose as a novel non-nutrient-deficiency regulatory factor for lipid accumulation in <em>C. sorokiniana</em> W1, and explores its metabolic and regulatory mechanisms under various nutrient conditions. The research demonstrates that mannose induction has significant potential for improving microalgal lipid production in practical applications.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"33 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.03.019","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Microalgae are considered promising bioenergy producers, but their commercial potential is limited by low lipid yields. Nutrient deprivation, particularly nitrogen starvation, is a primary strategy to enhance lipid synthesis efficiency in microalgae. However, controlling this process flexibly, effectively, and accurately remains challenging. Moreover, nutrient deficiency triggers expression changes of numerous genes, complicating the identification of key lipid biosynthesis regulators.

Objectives

For the first time, we investigated mannose as a novel non-nutrient-deficient regulator of lipid accumulation in microalgae and explored its potential underlying mechanisms.

Methods

We examined how mannose induction affects lipid accumulation in Chlorella sorokiniana W1 under various culture conditions and compared its effects with nitrogen-starvation. Transcriptome analysis and genome-scale metabolic modeling were used to elucidate the regulatory mechanisms underlying mannose-induced lipid synthesis. Additionally, potential transcription factors were identified using weighted gene co-expression network analysis.

Results

Mannose drives rapid and sustained lipid accumulation in C. sorokiniana under various cultivation conditions, independent of nutrient deficiencies. Under autotrophic conditions, mannose increased lipid content of microalgae by 80.1 %. Notably, mannose was not consumed during cultivation, supporting its role as an inducer. Transcriptomic analysis revealed that mannose increased carbon flux by upregulating genes associated with the Calvin cycle, glycolysis, the TCA cycle, and starch degradation. It also redirected carbon towards lipid accumulation by upregulating lipid synthesis pathways and downregulating lipid degradation pathways. Additionally, two SBP1 transcription factors specifically responsive to mannose were identified and may regulate carbon metabolism in microalgae.

Conclusion

Our study introduces mannose as a novel non-nutrient-deficiency regulatory factor for lipid accumulation in C. sorokiniana W1, and explores its metabolic and regulatory mechanisms under various nutrient conditions. The research demonstrates that mannose induction has significant potential for improving microalgal lipid production in practical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Advanced Research
Journal of Advanced Research Multidisciplinary-Multidisciplinary
CiteScore
21.60
自引率
0.90%
发文量
280
审稿时长
12 weeks
期刊介绍: Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences. The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.
期刊最新文献
Discovery of mannose as an alternative non-nutrient-deficient regulator of lipid accumulation in microalgae Evidence for the role of soil C/N ratio in shaping plant responses to root-knot nematode infection MG53 protects against septic cardiac dysfunction by ubiquitinating ATF2 Adaptive bilirubin nanoscavenger alleviates pulmonary oxidative stress and inflammation for acute lung injury therapy Minichromosome maintenance 4 plays a key role in protecting against acute kidney injury by regulating tubular epithelial cells survival and regeneration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1