Discrimination of Perfluorinated Arenes/Alkanes by Modulable Polyaromatic Capsules

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-03-18 DOI:10.1021/jacs.5c00904
Urara Kai, Ryuki Sumida, Yuya Tanaka, Michito Yoshizawa
{"title":"Discrimination of Perfluorinated Arenes/Alkanes by Modulable Polyaromatic Capsules","authors":"Urara Kai, Ryuki Sumida, Yuya Tanaka, Michito Yoshizawa","doi":"10.1021/jacs.5c00904","DOIUrl":null,"url":null,"abstract":"Efficient and selective binding of perfluorocarbons (PFCs), comprising only fluorine and carbon atoms, unlike hydrocarbons, remains quite difficult owing to the repulsive nature of fluorine. Here we describe that a cavity modulation strategy enables metal-linked polyaromatic capsules to quantitatively bind PFCs with excellent selectivity. From a mixture of perfluoroarene and the corresponding perfluoroalkane (i.e., perfluoronaphthalene and perfluorodecalin), a Pt(II)-linked capsule exclusively binds the arenes in water at room temperature, via effective D-A-A-D π-stacking interactions. The size-selective binding toward perfluoroarenes (i.e., perfluoronaphthalene and perfluorobenzene) is improved by using the analogous N-doped capsule from 85% to quantitative selectivity. Furthermore, unlike the Pt(II)-capsule, an isostructural Pd(II)-linked capsule displays the unusual length/shape-selective binding of linear/cyclic perfluoroalkanes (i.e., perfluoroheptane and perfluorodecalin) under similar conditions. Recognition of substituted hydrogen atoms on perfluorobiphenyl can also be accomplished using the Pt(II)-capsule. Various PFCs are thus clearly distinguished for the first time by the modulable polyaromatic capsules under ambient aqueous conditions.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"90 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c00904","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient and selective binding of perfluorocarbons (PFCs), comprising only fluorine and carbon atoms, unlike hydrocarbons, remains quite difficult owing to the repulsive nature of fluorine. Here we describe that a cavity modulation strategy enables metal-linked polyaromatic capsules to quantitatively bind PFCs with excellent selectivity. From a mixture of perfluoroarene and the corresponding perfluoroalkane (i.e., perfluoronaphthalene and perfluorodecalin), a Pt(II)-linked capsule exclusively binds the arenes in water at room temperature, via effective D-A-A-D π-stacking interactions. The size-selective binding toward perfluoroarenes (i.e., perfluoronaphthalene and perfluorobenzene) is improved by using the analogous N-doped capsule from 85% to quantitative selectivity. Furthermore, unlike the Pt(II)-capsule, an isostructural Pd(II)-linked capsule displays the unusual length/shape-selective binding of linear/cyclic perfluoroalkanes (i.e., perfluoroheptane and perfluorodecalin) under similar conditions. Recognition of substituted hydrogen atoms on perfluorobiphenyl can also be accomplished using the Pt(II)-capsule. Various PFCs are thus clearly distinguished for the first time by the modulable polyaromatic capsules under ambient aqueous conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Discrimination of Perfluorinated Arenes/Alkanes by Modulable Polyaromatic Capsules Collective Magnetism of Spin Coronoid via On-Surface Synthesis Compression of Molybdenum Blue Polyoxometalate Cluster Rings Enantioselective Biosynthesis of (+)- and (−)-Auranthines Diversity Synthesis Using Glutarimides as Rhodium Carbene Precursors in Enantioselective C–H Functionalization and Cyclopropanation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1