Protease inhibitor from Streptomyces pulveraceus strain VITSSAB as a potential therapeutic agent against BACE1 in Alzheimer's disease: A molecular docking and dynamics simulations study
Shatakshi Mishra , B. Stany , Aparana Kumari , K.V. Bhaskara Rao
{"title":"Protease inhibitor from Streptomyces pulveraceus strain VITSSAB as a potential therapeutic agent against BACE1 in Alzheimer's disease: A molecular docking and dynamics simulations study","authors":"Shatakshi Mishra , B. Stany , Aparana Kumari , K.V. Bhaskara Rao","doi":"10.1016/j.bcab.2025.103559","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer's disease (AD) is a leading neurodegenerative disorder causing memory decline and loss of independence. BACE1 catalyzes amyloid precursor protein (APP) cleavage, forming amyloid-beta plaques. Inhibiting BACE1 is a key strategy to prevent plaque accumulation and develop AD therapies.</div><div>This study investigates high-altitude terrestrial-pigmented actinomycetes as a potential source of therapeutic compounds targeting BACE1 protease. <em>Streptomyces pulveraceus</em> VITSSAB was identified as a strong inhibitor of aspartic proteases, specifically pepsin, exhibiting a protease inhibitory activity of 66.3 ± 0.938 %. Analytical techniques, including UPLC, GC-MS, and FTIR, identified N-(Trifluoroacetyl)-N,O,O′,O″-tetrakis(trimethylsilyl)norepinephrine as the key compound responsible for the observed protease inhibition. Drug-likeness properties of N-(Trifluoroacetyl)-N,O,O′,O″-tetrakis(trimethylsilyl)norepinephrine showed favorable pharmacokinetic characteristics, reinforcing its potential as a therapeutic agent. Molecular docking studies demonstrated a strong binding affinity of −7.24 kcal/mol between this compound and BACE1 protease, indicating its efficacy in targeting the enzyme. Molecular dynamics simulations further confirmed the stability of the compound-BACE1 complex. Considering its promising characteristics, N-(Trifluoroacetyl)-N,O,O′,O″-tetrakis(trimethylsilyl)norepinephrine presents itself as a strong candidate for further development as a potential therapeutic agent targeting AD, specifically as a BACE1 inhibitor.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"65 ","pages":"Article 103559"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878818125000726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is a leading neurodegenerative disorder causing memory decline and loss of independence. BACE1 catalyzes amyloid precursor protein (APP) cleavage, forming amyloid-beta plaques. Inhibiting BACE1 is a key strategy to prevent plaque accumulation and develop AD therapies.
This study investigates high-altitude terrestrial-pigmented actinomycetes as a potential source of therapeutic compounds targeting BACE1 protease. Streptomyces pulveraceus VITSSAB was identified as a strong inhibitor of aspartic proteases, specifically pepsin, exhibiting a protease inhibitory activity of 66.3 ± 0.938 %. Analytical techniques, including UPLC, GC-MS, and FTIR, identified N-(Trifluoroacetyl)-N,O,O′,O″-tetrakis(trimethylsilyl)norepinephrine as the key compound responsible for the observed protease inhibition. Drug-likeness properties of N-(Trifluoroacetyl)-N,O,O′,O″-tetrakis(trimethylsilyl)norepinephrine showed favorable pharmacokinetic characteristics, reinforcing its potential as a therapeutic agent. Molecular docking studies demonstrated a strong binding affinity of −7.24 kcal/mol between this compound and BACE1 protease, indicating its efficacy in targeting the enzyme. Molecular dynamics simulations further confirmed the stability of the compound-BACE1 complex. Considering its promising characteristics, N-(Trifluoroacetyl)-N,O,O′,O″-tetrakis(trimethylsilyl)norepinephrine presents itself as a strong candidate for further development as a potential therapeutic agent targeting AD, specifically as a BACE1 inhibitor.
期刊介绍:
Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.