Protease inhibitor from Streptomyces pulveraceus strain VITSSAB as a potential therapeutic agent against BACE1 in Alzheimer's disease: A molecular docking and dynamics simulations study

IF 3.4 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biocatalysis and agricultural biotechnology Pub Date : 2025-03-15 DOI:10.1016/j.bcab.2025.103559
Shatakshi Mishra , B. Stany , Aparana Kumari , K.V. Bhaskara Rao
{"title":"Protease inhibitor from Streptomyces pulveraceus strain VITSSAB as a potential therapeutic agent against BACE1 in Alzheimer's disease: A molecular docking and dynamics simulations study","authors":"Shatakshi Mishra ,&nbsp;B. Stany ,&nbsp;Aparana Kumari ,&nbsp;K.V. Bhaskara Rao","doi":"10.1016/j.bcab.2025.103559","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer's disease (AD) is a leading neurodegenerative disorder causing memory decline and loss of independence. BACE1 catalyzes amyloid precursor protein (APP) cleavage, forming amyloid-beta plaques. Inhibiting BACE1 is a key strategy to prevent plaque accumulation and develop AD therapies.</div><div>This study investigates high-altitude terrestrial-pigmented actinomycetes as a potential source of therapeutic compounds targeting BACE1 protease. <em>Streptomyces pulveraceus</em> VITSSAB was identified as a strong inhibitor of aspartic proteases, specifically pepsin, exhibiting a protease inhibitory activity of 66.3 ± 0.938 %. Analytical techniques, including UPLC, GC-MS, and FTIR, identified N-(Trifluoroacetyl)-N,O,O′,O″-tetrakis(trimethylsilyl)norepinephrine as the key compound responsible for the observed protease inhibition. Drug-likeness properties of N-(Trifluoroacetyl)-N,O,O′,O″-tetrakis(trimethylsilyl)norepinephrine showed favorable pharmacokinetic characteristics, reinforcing its potential as a therapeutic agent. Molecular docking studies demonstrated a strong binding affinity of −7.24 kcal/mol between this compound and BACE1 protease, indicating its efficacy in targeting the enzyme. Molecular dynamics simulations further confirmed the stability of the compound-BACE1 complex. Considering its promising characteristics, N-(Trifluoroacetyl)-N,O,O′,O″-tetrakis(trimethylsilyl)norepinephrine presents itself as a strong candidate for further development as a potential therapeutic agent targeting AD, specifically as a BACE1 inhibitor.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"65 ","pages":"Article 103559"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878818125000726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is a leading neurodegenerative disorder causing memory decline and loss of independence. BACE1 catalyzes amyloid precursor protein (APP) cleavage, forming amyloid-beta plaques. Inhibiting BACE1 is a key strategy to prevent plaque accumulation and develop AD therapies.
This study investigates high-altitude terrestrial-pigmented actinomycetes as a potential source of therapeutic compounds targeting BACE1 protease. Streptomyces pulveraceus VITSSAB was identified as a strong inhibitor of aspartic proteases, specifically pepsin, exhibiting a protease inhibitory activity of 66.3 ± 0.938 %. Analytical techniques, including UPLC, GC-MS, and FTIR, identified N-(Trifluoroacetyl)-N,O,O′,O″-tetrakis(trimethylsilyl)norepinephrine as the key compound responsible for the observed protease inhibition. Drug-likeness properties of N-(Trifluoroacetyl)-N,O,O′,O″-tetrakis(trimethylsilyl)norepinephrine showed favorable pharmacokinetic characteristics, reinforcing its potential as a therapeutic agent. Molecular docking studies demonstrated a strong binding affinity of −7.24 kcal/mol between this compound and BACE1 protease, indicating its efficacy in targeting the enzyme. Molecular dynamics simulations further confirmed the stability of the compound-BACE1 complex. Considering its promising characteristics, N-(Trifluoroacetyl)-N,O,O′,O″-tetrakis(trimethylsilyl)norepinephrine presents itself as a strong candidate for further development as a potential therapeutic agent targeting AD, specifically as a BACE1 inhibitor.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Draft genome sequence of the biocontrol strain Serratia plymuthica A30, isolated from rotting potato tuber tissue.
IF 3.2 3区 生物学Journal of BacteriologyPub Date : 2012-12-01 DOI: 10.1128/JB.01699-12
Robert Czajkowski, Jan M van der Wolf
Draft Genome Sequence of Naganishia liquefaciens Strain N6, Isolated from the Japan Trench.
IF 0.8 Microbiology Resource AnnouncementsPub Date : 2020-11-19 DOI: 10.1128/MRA.00827-20
Yong-Woon Han, Rei Kajitani, Hiroya Morimoto, Maierdan Palihati, Yumiko Kurokawa, Rie Ryusui, Bilge Argunhan, Hideo Tsubouchi, Fumiyoshi Abe, Susumu Kajiwara, Hiroshi Iwasaki, Takehiko Itoh
来源期刊
Biocatalysis and agricultural biotechnology
Biocatalysis and agricultural biotechnology Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
7.70
自引率
2.50%
发文量
308
审稿时长
48 days
期刊介绍: Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.
期刊最新文献
Comparative evaluation of pyrene degrading potential of three gram-negative bacterial strains: Acinetobacter baumannii BJ5, Acinetobacter pitti NFL, and Enterobacter cloacae BT Thymol rich essential oil from Assam ecotype of Ocimum gratissimum as a biocontrol agent for sheath blight disease of rice Effect of green synthesized ZnO nanoparticles for growth promotion in Pennisetum glaucum (L.) R. Br. validated through physio-biochemical and molecular analysis Green synthesis, bio-evaluation, and in silico study of dibenzalacetone: A curcumin analog for the medicinal treatment of inflammatory diseases Protease inhibitor from Streptomyces pulveraceus strain VITSSAB as a potential therapeutic agent against BACE1 in Alzheimer's disease: A molecular docking and dynamics simulations study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1