Thermodynamics-based modelling of undrained viscoplastic flow deformation in granular material

IF 5.7 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY International Journal of Engineering Science Pub Date : 2025-03-18 DOI:10.1016/j.ijengsci.2025.104251
Yang Xiao , Fang Liang , Zhichao Zhang
{"title":"Thermodynamics-based modelling of undrained viscoplastic flow deformation in granular material","authors":"Yang Xiao ,&nbsp;Fang Liang ,&nbsp;Zhichao Zhang","doi":"10.1016/j.ijengsci.2025.104251","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the thermodynamics of granular material is developed to get constitutive relations for unified modelling of undrained viscoplastic flow behavior with complex combined effects of state, rate, time, and path. The proposed formulations of energy storages and dissipations lead to the state-dependent hyperelasticity with an elastic instable region and the viscoplasticity with considerations of the granular kinetic flow. Subjected to strict thermodynamic restraints, a generalized law of viscoplastic shear flow is proposed for granular material as the combination of state-based and rate-based viscoplastic flows, which predictively captures the diversity of undrained granular flow pattern with elastic-plastic coupled non-coaxialities among stresses, (total/viscoplastic/elastic) strains, and their increments. The viscoplastic flow is also linked with the granular temperature that accounts for the granular kinetic fluctuation varying from dilative dense flow to large unlimited flow under shear-induced static liquefaction. This enables predictions of the creep and the stress relaxation as well as the over- and -under shooting of stress under stepwise changes in strain rate. The model is well validated by predicting the flow potential, phase transformation, critical state, and rate/time effects under undrained conventional triaxial shearing and simple shearing for Toyoura sand, which are strongly related to the void ratio, the confining pressure, the shear stress, and the shear mode.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"211 ","pages":"Article 104251"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722525000382","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the thermodynamics of granular material is developed to get constitutive relations for unified modelling of undrained viscoplastic flow behavior with complex combined effects of state, rate, time, and path. The proposed formulations of energy storages and dissipations lead to the state-dependent hyperelasticity with an elastic instable region and the viscoplasticity with considerations of the granular kinetic flow. Subjected to strict thermodynamic restraints, a generalized law of viscoplastic shear flow is proposed for granular material as the combination of state-based and rate-based viscoplastic flows, which predictively captures the diversity of undrained granular flow pattern with elastic-plastic coupled non-coaxialities among stresses, (total/viscoplastic/elastic) strains, and their increments. The viscoplastic flow is also linked with the granular temperature that accounts for the granular kinetic fluctuation varying from dilative dense flow to large unlimited flow under shear-induced static liquefaction. This enables predictions of the creep and the stress relaxation as well as the over- and -under shooting of stress under stepwise changes in strain rate. The model is well validated by predicting the flow potential, phase transformation, critical state, and rate/time effects under undrained conventional triaxial shearing and simple shearing for Toyoura sand, which are strongly related to the void ratio, the confining pressure, the shear stress, and the shear mode.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Engineering Science
International Journal of Engineering Science 工程技术-工程:综合
CiteScore
11.80
自引率
16.70%
发文量
86
审稿时长
45 days
期刊介绍: The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome. The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process. Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.
期刊最新文献
Thermodynamics-based modelling of undrained viscoplastic flow deformation in granular material Non-uniform perturbation temperature of thermoelectric material due to a smooth inhomogeneity Editorial Board Peculiarities of hydraulic fracture propagation in media with heterogeneous toughness: The energy balance, elastic battery and fluid backflow On three-dimensional dynamics of smart rotating micro-disks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1