Zirconium metal electrodeposition on uranium nitride in molten fluoride salts

IF 3.2 2区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Nuclear Materials Pub Date : 2025-03-14 DOI:10.1016/j.jnucmat.2025.155750
Jarom L. Chamberlain , Hannah K. Patenaude , Amanda L. Musgrove , Rami J. Batrice , Timothy P. Coons , Marisa J. Monreal
{"title":"Zirconium metal electrodeposition on uranium nitride in molten fluoride salts","authors":"Jarom L. Chamberlain ,&nbsp;Hannah K. Patenaude ,&nbsp;Amanda L. Musgrove ,&nbsp;Rami J. Batrice ,&nbsp;Timothy P. Coons ,&nbsp;Marisa J. Monreal","doi":"10.1016/j.jnucmat.2025.155750","DOIUrl":null,"url":null,"abstract":"<div><div>Uranium nitride (UN) has application as fuel for nuclear thermal rockets and advanced nuclear reactors. The high melting point, high fissile density, and thermal conductivity of UN makes it an attractive candidate for fuel in these applications. Coating uranium nitride fuel with metal such as zirconium provides additional stability and containment to the UN, promoting its survivability and accident tolerance. This study demonstrates molten salt electrodeposition as a method to deposit a coating of zirconium metal onto a uranium nitride substrate. Cyclic voltammetry was used to characterize the molten salt system and demonstrate the zirconium precursor reduction. Post electrodeposition characterization depicted a zirconium metal coating on the uranium nitride substrate. Preferential growth was observed on one of the substrate interfaces. The average thickness of the coating where preferential growth was depicted was 194 µm.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"609 ","pages":"Article 155750"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002231152500145X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Uranium nitride (UN) has application as fuel for nuclear thermal rockets and advanced nuclear reactors. The high melting point, high fissile density, and thermal conductivity of UN makes it an attractive candidate for fuel in these applications. Coating uranium nitride fuel with metal such as zirconium provides additional stability and containment to the UN, promoting its survivability and accident tolerance. This study demonstrates molten salt electrodeposition as a method to deposit a coating of zirconium metal onto a uranium nitride substrate. Cyclic voltammetry was used to characterize the molten salt system and demonstrate the zirconium precursor reduction. Post electrodeposition characterization depicted a zirconium metal coating on the uranium nitride substrate. Preferential growth was observed on one of the substrate interfaces. The average thickness of the coating where preferential growth was depicted was 194 µm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
熔氟盐中氮化铀电沉积金属锆
氮化铀(UN)作为核热火箭和先进核反应堆的燃料得到了广泛的应用。UN的高熔点、高裂变密度和导热性使其成为这些应用中有吸引力的候选燃料。用锆等金属包裹氮化铀燃料为联合国提供了额外的稳定性和遏制能力,提高了其生存能力和事故容忍度。本研究展示了熔盐电沉积作为一种方法沉积锆金属涂层在铀氮化基底上。采用循环伏安法对熔盐体系进行了表征,并对锆前驱体还原进行了验证。电沉积后的表征描述了氮化铀衬底上的锆金属涂层。在其中一个衬底界面上观察到优先生长。优先生长的涂层平均厚度为194µm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nuclear Materials
Journal of Nuclear Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
25.80%
发文量
601
审稿时长
63 days
期刊介绍: The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome. The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example. Topics covered by JNM Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior. Materials aspects of the entire fuel cycle. Materials aspects of the actinides and their compounds. Performance of nuclear waste materials; materials aspects of the immobilization of wastes. Fusion reactor materials, including first walls, blankets, insulators and magnets. Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties. Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.
期刊最新文献
Corrigendum to “Post-irradiation examination of AGR-3/4 TRISO fuel compacts using three-dimensional X-ray computed tomography” [Journal of Nuclear Materials Volume 620 (2026) 156341] Sustainable granite encapsulation of volatile nuclear wastes: A flux-mediated low-temperature strategy Editorial Board Origin of the inner-layer stratification of 316 L in 430℃ high-temperature steam Effect of Mo/Nb addition on recrystallization behavior and high temperature mechanical properties of FeCrAl alloy tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1