Hamza Bousdra , Noureddine Ben Afkir , Jaafar Meziane , Mimoun Zazoui
{"title":"Analysing the internal electric field in GaN/InxGa1−xN MQW solar cells: A comparative study of Ga-face and N-face structures","authors":"Hamza Bousdra , Noureddine Ben Afkir , Jaafar Meziane , Mimoun Zazoui","doi":"10.1016/j.physb.2025.417137","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the optical and electrical performance of Ga-face and N-face <span><math><mrow><mtext>GaN</mtext><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mtext>GaN</mtext><mo>/</mo><mtext>In</mtext></mrow><mi>x</mi></msub><msub><mtext>Ga</mtext><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub><mi>N</mi><mspace></mspace><mtext>QW</mtext><mo>−</mo><mtext>GaN</mtext><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> multiple quantum well solar cells (MQWSCs) to address the need for more efficient solar energy conversion. Using a numerical finite difference method (FDM), we analysed the impacts of built-in electric fields, spontaneous and piezoelectric polarizations, the quantum well (QW) size, the QW number, and the indium concentration on the optical and electrical characteristics of the proposed MQW solar cell. Our findings indicate that N-face structures align built-in and polarization fields, enhancing carrier generation and collection compared with Ga-face structures. Specifically, our results demonstrate that, at x = 0.6, w = 2 nm, and <span><math><mrow><msub><mi>N</mi><mtext>QW</mtext></msub><mo>=</mo><mn>50</mn></mrow></math></span>, the N-face structure achieves maximum conversion efficiencies of 26.56 % and 23.47 %, respectively, for the Ga-face structure. These findings demonstrate that tuning the QW thickness and indium concentration can optimize the MQWSC efficiency, with N-face structures achieving greater performance. This work highlights the potential of N-face p-i-n structures in advancing high-efficiency solar cells.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"706 ","pages":"Article 417137"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625002546","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the optical and electrical performance of Ga-face and N-face multiple quantum well solar cells (MQWSCs) to address the need for more efficient solar energy conversion. Using a numerical finite difference method (FDM), we analysed the impacts of built-in electric fields, spontaneous and piezoelectric polarizations, the quantum well (QW) size, the QW number, and the indium concentration on the optical and electrical characteristics of the proposed MQW solar cell. Our findings indicate that N-face structures align built-in and polarization fields, enhancing carrier generation and collection compared with Ga-face structures. Specifically, our results demonstrate that, at x = 0.6, w = 2 nm, and , the N-face structure achieves maximum conversion efficiencies of 26.56 % and 23.47 %, respectively, for the Ga-face structure. These findings demonstrate that tuning the QW thickness and indium concentration can optimize the MQWSC efficiency, with N-face structures achieving greater performance. This work highlights the potential of N-face p-i-n structures in advancing high-efficiency solar cells.
期刊介绍:
Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work.
Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas:
-Magnetism
-Materials physics
-Nanostructures and nanomaterials
-Optics and optical materials
-Quantum materials
-Semiconductors
-Strongly correlated systems
-Superconductivity
-Surfaces and interfaces