Fibrinogen-like 2 in tumor-associated macrophage-derived extracellular vesicles shapes an immunosuppressive microenvironment in colorectal liver metastases by promoting tumor stemness and neutrophil extracellular traps formation
{"title":"Fibrinogen-like 2 in tumor-associated macrophage-derived extracellular vesicles shapes an immunosuppressive microenvironment in colorectal liver metastases by promoting tumor stemness and neutrophil extracellular traps formation","authors":"Menghua Zhou , Bingjie Guan , Youdong Liu , Qi Gu , Weiwei Chen , Bowen Xie , Mantang Zhou , Jianjun Xiang , Senlin Zhao , Qian Zhao , Dongwang Yan","doi":"10.1016/j.canlet.2025.217642","DOIUrl":null,"url":null,"abstract":"<div><div>Investigating the mechanisms underlying the development of an immunosuppressive microenvironment within colorectal liver metastases (CRLM) is important for identifying synergistic targets for immunotherapy. The regulatory role of tumor-associated macrophage-derived extracellular vesicles (TAM-EVs) in the immune microenvironment of CRLM has not yet been fully explored. Here, we found that TAM-EVs shaped the immunosuppressive microenvironment at the invasive front in murine CRLM models, thus dampening anti-PD-1 immunotherapy. This environment is characterized by an increased tumor stemness potential and abundant neutrophil extracellular traps (NETs) formation. Mechanistically, TAM-EVs-derived fibrinogen-like 2 (FGL2) interacts with the FCGR2B receptor in tumor cells, which further activates a p-STAT3/IL-1β positive feedback loop to increase the stemness potential of cancer cells, whereas IL-1β mediates the communication between cancer cells and neutrophils. The use of an anti-IL-1β monoclonal antibody can reduce NETs production and synergize with anti-PD-1 immunotherapy, which offers clinical translational significance for CRLM therapy. The FGL2/p-STAT3/IL-1β loop correlates with an immunosuppressive microenvironment and poor prognosis in human patients with CRLM. Our results revealed the potential of enhancing the efficacy of immunotherapy via the targeted clearance of NETs using anti-IL-1β monoclonal antibodies, which have significant clinical translational value in the treatment of CRLM.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"618 ","pages":"Article 217642"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030438352500206X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Investigating the mechanisms underlying the development of an immunosuppressive microenvironment within colorectal liver metastases (CRLM) is important for identifying synergistic targets for immunotherapy. The regulatory role of tumor-associated macrophage-derived extracellular vesicles (TAM-EVs) in the immune microenvironment of CRLM has not yet been fully explored. Here, we found that TAM-EVs shaped the immunosuppressive microenvironment at the invasive front in murine CRLM models, thus dampening anti-PD-1 immunotherapy. This environment is characterized by an increased tumor stemness potential and abundant neutrophil extracellular traps (NETs) formation. Mechanistically, TAM-EVs-derived fibrinogen-like 2 (FGL2) interacts with the FCGR2B receptor in tumor cells, which further activates a p-STAT3/IL-1β positive feedback loop to increase the stemness potential of cancer cells, whereas IL-1β mediates the communication between cancer cells and neutrophils. The use of an anti-IL-1β monoclonal antibody can reduce NETs production and synergize with anti-PD-1 immunotherapy, which offers clinical translational significance for CRLM therapy. The FGL2/p-STAT3/IL-1β loop correlates with an immunosuppressive microenvironment and poor prognosis in human patients with CRLM. Our results revealed the potential of enhancing the efficacy of immunotherapy via the targeted clearance of NETs using anti-IL-1β monoclonal antibodies, which have significant clinical translational value in the treatment of CRLM.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.