Ammonia combustion in fixed-bed and fluidised-bed reactors: The concept, knowledge base, and challenges

IF 32 1区 工程技术 Q1 ENERGY & FUELS Progress in Energy and Combustion Science Pub Date : 2025-03-18 DOI:10.1016/j.pecs.2025.101230
Samuel Ronald Holden , Zhezi Zhang , Junzi Wu , Dongke Zhang
{"title":"Ammonia combustion in fixed-bed and fluidised-bed reactors: The concept, knowledge base, and challenges","authors":"Samuel Ronald Holden ,&nbsp;Zhezi Zhang ,&nbsp;Junzi Wu ,&nbsp;Dongke Zhang","doi":"10.1016/j.pecs.2025.101230","DOIUrl":null,"url":null,"abstract":"<div><div>In considering ammonia (NH<sub>3</sub>) as a carbon-free fuel for large-scale power generation, this review examines the current state of knowledge of NH<sub>3</sub> as a fuel in terms of its thermophysical properties and burning characteristics compared to conventional hydrocarbon fuels. The proceeding analysis portrays the challenges associated with NH<sub>3</sub> combustion in traditional systems and suggests fluidised-bed NH<sub>3</sub> combustion as a plausible means to provide reliable ignition, stable combustion, and reduced NOx emission. A fixed-bed is considered as a research tool, as well as a special case of fluidised-bed, to study NH<sub>3</sub> oxidation and combustion in the presence of solid bed material to provide foundational information key to understanding the more complicated fluidised-bed NH<sub>3</sub> combustion. The thermophysical properties and burning characteristics of NH<sub>3</sub>, along with an examination of the combustion of other fuels in the presence of solid media, enable expectations for NH<sub>3</sub> combustion in fixed- and fluidised-beds. A general fluidised-bed NH<sub>3</sub> combustion system design, along with suggested operating conditions, is presented to provide an appreciation for a practical large-scale fluidised-bed NH<sub>3</sub> fired power generation system. The NH<sub>3</sub> combustion chemistry and associated NOx formation and destruction pathways are also discussed to appreciate the impact of operating conditions on combustion performance. Finally, the review identifies key knowledge gaps and technical challenges which warrant further research to advance fluidised-bed NH<sub>3</sub> combustion technology for large-scale electric power generation in a carbon constrained future.</div></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"109 ","pages":"Article 101230"},"PeriodicalIF":32.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Energy and Combustion Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S036012852500022X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In considering ammonia (NH3) as a carbon-free fuel for large-scale power generation, this review examines the current state of knowledge of NH3 as a fuel in terms of its thermophysical properties and burning characteristics compared to conventional hydrocarbon fuels. The proceeding analysis portrays the challenges associated with NH3 combustion in traditional systems and suggests fluidised-bed NH3 combustion as a plausible means to provide reliable ignition, stable combustion, and reduced NOx emission. A fixed-bed is considered as a research tool, as well as a special case of fluidised-bed, to study NH3 oxidation and combustion in the presence of solid bed material to provide foundational information key to understanding the more complicated fluidised-bed NH3 combustion. The thermophysical properties and burning characteristics of NH3, along with an examination of the combustion of other fuels in the presence of solid media, enable expectations for NH3 combustion in fixed- and fluidised-beds. A general fluidised-bed NH3 combustion system design, along with suggested operating conditions, is presented to provide an appreciation for a practical large-scale fluidised-bed NH3 fired power generation system. The NH3 combustion chemistry and associated NOx formation and destruction pathways are also discussed to appreciate the impact of operating conditions on combustion performance. Finally, the review identifies key knowledge gaps and technical challenges which warrant further research to advance fluidised-bed NH3 combustion technology for large-scale electric power generation in a carbon constrained future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Energy and Combustion Science
Progress in Energy and Combustion Science 工程技术-工程:化工
CiteScore
59.30
自引率
0.70%
发文量
44
审稿时长
3 months
期刊介绍: Progress in Energy and Combustion Science (PECS) publishes review articles covering all aspects of energy and combustion science. These articles offer a comprehensive, in-depth overview, evaluation, and discussion of specific topics. Given the importance of climate change and energy conservation, efficient combustion of fossil fuels and the development of sustainable energy systems are emphasized. Environmental protection requires limiting pollutants, including greenhouse gases, emitted from combustion and other energy-intensive systems. Additionally, combustion plays a vital role in process technology and materials science. PECS features articles authored by internationally recognized experts in combustion, flames, fuel science and technology, and sustainable energy solutions. Each volume includes specially commissioned review articles providing orderly and concise surveys and scientific discussions on various aspects of combustion and energy. While not overly lengthy, these articles allow authors to thoroughly and comprehensively explore their subjects. They serve as valuable resources for researchers seeking knowledge beyond their own fields and for students and engineers in government and industrial research seeking comprehensive reviews and practical solutions.
期刊最新文献
Ammonia combustion in fixed-bed and fluidised-bed reactors: The concept, knowledge base, and challenges Editorial Board CFD-DEM modelling of dense gas-solid reacting flow: Recent advances and challenges A comprehensive review on flash point behavior of binary ignitable mixtures: Trends, influencing factors, safety and fuel design implications, and future directions End-gas autoignition and detonation in confined space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1