Amorphous Solid Dispersion/Salt of Efavirenz: Investigating the Role of Molecular Interactions on Recrystallization and In-vitro Dissolution Performance
{"title":"Amorphous Solid Dispersion/Salt of Efavirenz: Investigating the Role of Molecular Interactions on Recrystallization and In-vitro Dissolution Performance","authors":"Aastha Gadoya, Kiran Dudhat, Sunny Shah, Chetan Borkhataria, Trupesh Pethani, Viral Shah, Nilesh Janbukiya, Saina Jyotishi, Jainabparvin Ansari, Mori Dhaval","doi":"10.1208/s12249-025-03084-w","DOIUrl":null,"url":null,"abstract":"<div><p>Efavirenz (EFZ), a BCS (Biopharmaceutical classification system) class-II/IV drug, suffers from low oral bioavailability (40–50%) and significant inter/intra-individual variability due to its low solubility and poor dissolution properties. The present investigation aimed to prepare a stable amorphous system of EFZ to improve its dissolution using the slurry method with various polymers and examine the nature of the interaction between them and its impact on the stability (recrystallization) of the formed systems and their <i>in-vitro</i> dissolution performance. Differential Scanning Calorimetry (DSC) and Powder X-ray Diffraction (PXRD) studies proved the formation of a complete amorphous system of EFZ with Eudragit® E100, HPMC E5, and HPMCAS-LF up to 50% drug loading. During 90 days accelerated stability studies, amorphous systems prepared using Eudragit® E100 remained stable at 50% drug loading however those prepared with HPMC E5, and HPMCAS-LF only remained stable at 25% drug loading. The ability of Eudragit® E100 based system to stabilize the drug at higher drug loading was attributed to the formation of stronger ionic interaction as revealed by the Fourier-transform infrared spectroscopy (FTIR) study. During <i>in-vitro</i> dissolution study, Eudragit® E100 based amorphous system generated and maintained significantly higher supersaturation compared to those prepared with HPMC E5, and HPMCAS-LF due to the formation of ionic interaction between EFZ and Eudragit® E100 as revealed by solution <sup>1</sup>H NMR study.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-025-03084-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Efavirenz (EFZ), a BCS (Biopharmaceutical classification system) class-II/IV drug, suffers from low oral bioavailability (40–50%) and significant inter/intra-individual variability due to its low solubility and poor dissolution properties. The present investigation aimed to prepare a stable amorphous system of EFZ to improve its dissolution using the slurry method with various polymers and examine the nature of the interaction between them and its impact on the stability (recrystallization) of the formed systems and their in-vitro dissolution performance. Differential Scanning Calorimetry (DSC) and Powder X-ray Diffraction (PXRD) studies proved the formation of a complete amorphous system of EFZ with Eudragit® E100, HPMC E5, and HPMCAS-LF up to 50% drug loading. During 90 days accelerated stability studies, amorphous systems prepared using Eudragit® E100 remained stable at 50% drug loading however those prepared with HPMC E5, and HPMCAS-LF only remained stable at 25% drug loading. The ability of Eudragit® E100 based system to stabilize the drug at higher drug loading was attributed to the formation of stronger ionic interaction as revealed by the Fourier-transform infrared spectroscopy (FTIR) study. During in-vitro dissolution study, Eudragit® E100 based amorphous system generated and maintained significantly higher supersaturation compared to those prepared with HPMC E5, and HPMCAS-LF due to the formation of ionic interaction between EFZ and Eudragit® E100 as revealed by solution 1H NMR study.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.