{"title":"Public participation GIS scenarios for decision-making on land-use requirements for renewable energy systems","authors":"Christine Rösch, Elham Fakharizadehshirazi","doi":"10.1186/s13705-025-00518-y","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The transition to renewable energy is crucial for decarbonising the energy system but creates land-use competition. Whilst there is consensus on the need for local responsibility in achieving climate neutrality, debates continue over where to implement renewable energy plants. The Public Participation Geographic Information System (PPGIS) scenario approach can facilitate these debates and improve equity and procedural and distributive justice.</p><h3>Results</h3><p>The findings highlight the effectiveness of the PPGIS method in assessing the spatial impact of technologies on agriculture and landscapes. The approach was tested in a rural German municipality to help stakeholders and citizens recognise the potential for land-based solar energy even under strict constraints. These insights were shared to support decision-makers on land-use changes to increase renewable energy production.</p><h3>Conclusions</h3><p>The findings indicate that the PPGIS scenario approach is valuable for improving equity and mutual understanding in local decision-making processes. Incorporating stakeholders’ and citizens’ perspectives into renewable energy planning enhances the transparency, legitimacy, and acceptability of land-use decisions. The ability to visualise and quantitatively assess different scenarios makes PPGIS particularly useful for addressing the complexities of public debates on land-use requirements for renewable energy systems.</p></div>","PeriodicalId":539,"journal":{"name":"Energy, Sustainability and Society","volume":"15 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energsustainsoc.biomedcentral.com/counter/pdf/10.1186/s13705-025-00518-y","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy, Sustainability and Society","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13705-025-00518-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The transition to renewable energy is crucial for decarbonising the energy system but creates land-use competition. Whilst there is consensus on the need for local responsibility in achieving climate neutrality, debates continue over where to implement renewable energy plants. The Public Participation Geographic Information System (PPGIS) scenario approach can facilitate these debates and improve equity and procedural and distributive justice.
Results
The findings highlight the effectiveness of the PPGIS method in assessing the spatial impact of technologies on agriculture and landscapes. The approach was tested in a rural German municipality to help stakeholders and citizens recognise the potential for land-based solar energy even under strict constraints. These insights were shared to support decision-makers on land-use changes to increase renewable energy production.
Conclusions
The findings indicate that the PPGIS scenario approach is valuable for improving equity and mutual understanding in local decision-making processes. Incorporating stakeholders’ and citizens’ perspectives into renewable energy planning enhances the transparency, legitimacy, and acceptability of land-use decisions. The ability to visualise and quantitatively assess different scenarios makes PPGIS particularly useful for addressing the complexities of public debates on land-use requirements for renewable energy systems.
期刊介绍:
Energy, Sustainability and Society is a peer-reviewed open access journal published under the brand SpringerOpen. It covers topics ranging from scientific research to innovative approaches for technology implementation to analysis of economic, social and environmental impacts of sustainable energy systems.