Context in object detection: a systematic literature review

IF 10.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Intelligence Review Pub Date : 2025-03-19 DOI:10.1007/s10462-025-11186-x
Mahtab Jamali, Paul Davidsson, Reza Khoshkangini, Martin Georg Ljungqvist, Radu-Casian Mihailescu
{"title":"Context in object detection: a systematic literature review","authors":"Mahtab Jamali,&nbsp;Paul Davidsson,&nbsp;Reza Khoshkangini,&nbsp;Martin Georg Ljungqvist,&nbsp;Radu-Casian Mihailescu","doi":"10.1007/s10462-025-11186-x","DOIUrl":null,"url":null,"abstract":"<div><p>Context is an important factor in computer vision as it offers valuable information to clarify and analyze visual data. Utilizing the contextual information inherent in an image or a video can improve the precision and effectiveness of object detectors. For example, where recognizing an isolated object might be challenging, context information can improve comprehension of the scene. This study explores the impact of various context-based approaches to object detection. Initially, we investigate the role of context in object detection and survey it from several perspectives. We then review and discuss the most recent context-based object detection approaches and compare them. Finally, we conclude by addressing research questions and identifying gaps for further studies. More than 265 publications are included in this survey, covering different aspects of context in different categories of object detection, including general object detection, video object detection, small object detection, camouflaged object detection, zero-shot, one-shot, and few-shot object detection. This literature review presents a comprehensive overview of the latest advancements in context-based object detection, providing valuable contributions such as a thorough understanding of contextual information and effective methods for integrating various context types into object detection, thus benefiting researchers.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 6","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11186-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11186-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Context is an important factor in computer vision as it offers valuable information to clarify and analyze visual data. Utilizing the contextual information inherent in an image or a video can improve the precision and effectiveness of object detectors. For example, where recognizing an isolated object might be challenging, context information can improve comprehension of the scene. This study explores the impact of various context-based approaches to object detection. Initially, we investigate the role of context in object detection and survey it from several perspectives. We then review and discuss the most recent context-based object detection approaches and compare them. Finally, we conclude by addressing research questions and identifying gaps for further studies. More than 265 publications are included in this survey, covering different aspects of context in different categories of object detection, including general object detection, video object detection, small object detection, camouflaged object detection, zero-shot, one-shot, and few-shot object detection. This literature review presents a comprehensive overview of the latest advancements in context-based object detection, providing valuable contributions such as a thorough understanding of contextual information and effective methods for integrating various context types into object detection, thus benefiting researchers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
上下文是计算机视觉中的一个重要因素,因为它为澄清和分析视觉数据提供了有价值的信息。利用图像或视频中固有的上下文信息可以提高物体检测器的精度和有效性。例如,识别孤立的物体可能具有挑战性,而上下文信息则可以提高对场景的理解。本研究探讨了各种基于上下文的物体检测方法的影响。首先,我们研究了上下文在物体检测中的作用,并从多个角度对其进行了调查。然后,我们回顾并讨论了最新的基于上下文的物体检测方法,并对它们进行了比较。最后,我们提出了研究问题,并指出了有待进一步研究的空白。本次调查共收录了超过 265 篇文献,涵盖了不同类别物体检测中上下文的不同方面,包括一般物体检测、视频物体检测、小物体检测、伪装物体检测、零镜头、单镜头和少镜头物体检测。这篇文献综述全面概述了基于上下文的物体检测的最新进展,提供了有价值的贡献,如对上下文信息的透彻理解,以及将各种上下文类型整合到物体检测中的有效方法,从而使研究人员受益匪浅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
期刊最新文献
Context in object detection: a systematic literature review LiDAR, IMU, and camera fusion for simultaneous localization and mapping: a systematic review A context and sequence-based recommendation framework using GRU networks Polyp segmentation in medical imaging: challenges, approaches and future directions Application of machine learning in early warning system of geotechnical disaster: a systematic and comprehensive review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1