Quantum Computer Architecture for Quantum Error Correction With Distributing Process to Multiple Temperature Layers

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Concurrency and Computation-Practice & Experience Pub Date : 2025-03-19 DOI:10.1002/cpe.8351
Ryuji Ukai, Chihiro Yoshimura, Hiroyuki Mizuno
{"title":"Quantum Computer Architecture for Quantum Error Correction With Distributing Process to Multiple Temperature Layers","authors":"Ryuji Ukai,&nbsp;Chihiro Yoshimura,&nbsp;Hiroyuki Mizuno","doi":"10.1002/cpe.8351","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Quantum computers are capable of performing large-scale calculations in a shorter time than conventional classical computers. Because quantum computers are realized in microscopic physical systems, unintended change in the quantum state is unavoidable due to interaction between environment, and it would lead to error in computation. Therefore, quantum error correction is needed to detect and correct errors that have occurred. In this paper, we propose quantum computer architecture for quantum error correction by taking account that the components of a quantum computer with quantum dots in silicon are divided into multiple temperature layers inside and outside the dilution refrigerator. Based on the required performance and possible processing capacity, each component was distributed in various temperature layers: the chip with qubits and the chip for generation of precise analog signals to control qubits are placed on 100 mK and 4 K stages inside the dilution refrigerator, respectively, while real-time digital processing is performed outside the dilution refrigerator. We then experimentally demonstrate the digital control sequence for quantum error correction combined with a simulator which simulates quantum states based on control commands from the digital processing system. The simulator enables the proof-of-principle experiment of system architecture independent of the development of the chips. The real time processing including determination of feed-forward operation and transmission of feed-forward operation commands is carried out by a field-programmable gate array (FPGA) outside the dilution refrigerator within 0.01 ms for bit-flip or phase-flip error corrections. This is a sufficiently short time compared to the assumed relaxation time, which is the approximate time that the quantum state can be preserved, meaning that our proposed architecture is applicable to quantum error correction.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"37 6-8","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8351","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum computers are capable of performing large-scale calculations in a shorter time than conventional classical computers. Because quantum computers are realized in microscopic physical systems, unintended change in the quantum state is unavoidable due to interaction between environment, and it would lead to error in computation. Therefore, quantum error correction is needed to detect and correct errors that have occurred. In this paper, we propose quantum computer architecture for quantum error correction by taking account that the components of a quantum computer with quantum dots in silicon are divided into multiple temperature layers inside and outside the dilution refrigerator. Based on the required performance and possible processing capacity, each component was distributed in various temperature layers: the chip with qubits and the chip for generation of precise analog signals to control qubits are placed on 100 mK and 4 K stages inside the dilution refrigerator, respectively, while real-time digital processing is performed outside the dilution refrigerator. We then experimentally demonstrate the digital control sequence for quantum error correction combined with a simulator which simulates quantum states based on control commands from the digital processing system. The simulator enables the proof-of-principle experiment of system architecture independent of the development of the chips. The real time processing including determination of feed-forward operation and transmission of feed-forward operation commands is carried out by a field-programmable gate array (FPGA) outside the dilution refrigerator within 0.01 ms for bit-flip or phase-flip error corrections. This is a sufficiently short time compared to the assumed relaxation time, which is the approximate time that the quantum state can be preserved, meaning that our proposed architecture is applicable to quantum error correction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
期刊最新文献
Quantum Computer Architecture for Quantum Error Correction With Distributing Process to Multiple Temperature Layers On Reducing Stretch in Spanning Trees Quadratic Estimation for Discrete Time System With State Equality Constraints and Composite Disturbances Dynamic Algorithms for Approximate Steiner Trees Analysis and Performance Measure of Dynamic Cluster Based Hierarchical Real Time Scheduling for Distributed Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1