{"title":"Banded phases in topological flocks.","authors":"Charles R Packard, Daniel M Sussman","doi":"10.1039/d4sm01066c","DOIUrl":null,"url":null,"abstract":"<p><p>Flocking phase transitions arise in many aligning active soft matter systems, and an interesting question concerns the role of \"topological\" <i>vs.</i> \"metric\" interactions on these transitions. While recent theoretical work suggests that the order-disorder transition in these polar aligning models is universally first order, numerical studies have suggested that topological models may instead have a continuous transition. Some recent simulations have found that some variations of topologically interacting flocking agents have a discontinuous transition, but unambiguous observations of phase coexistence using common Voronoi-based alignment remains elusive. In this work, we use a custom GPU-accelerated simulation package to perform million-particle-scale simulations of a Voronoi-Vicsek model in which alignment interactions stem from an <i>XY</i>-like Hamiltonian. By accessing such large systems on appropriately long time scales and in the time-continuous limit, we are able to show a regime of stable phase coexistence between the ordered and disordered phases, confirming the discontinuous nature of this transition in the thermodynamic limit.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01066c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Flocking phase transitions arise in many aligning active soft matter systems, and an interesting question concerns the role of "topological" vs. "metric" interactions on these transitions. While recent theoretical work suggests that the order-disorder transition in these polar aligning models is universally first order, numerical studies have suggested that topological models may instead have a continuous transition. Some recent simulations have found that some variations of topologically interacting flocking agents have a discontinuous transition, but unambiguous observations of phase coexistence using common Voronoi-based alignment remains elusive. In this work, we use a custom GPU-accelerated simulation package to perform million-particle-scale simulations of a Voronoi-Vicsek model in which alignment interactions stem from an XY-like Hamiltonian. By accessing such large systems on appropriately long time scales and in the time-continuous limit, we are able to show a regime of stable phase coexistence between the ordered and disordered phases, confirming the discontinuous nature of this transition in the thermodynamic limit.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.