Nonvolatile and Strongly Coordinating Solvent Enables Blade-coating of Efficient FACs-based Perovskite Solar Cells.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2025-03-17 DOI:10.1002/smtd.202402177
Zhihao Hu, Hongkun Cai, Xiaoguang Luo, Baoyu Han, Jifeng Liu, Qinwen Guo, Yingchen Li, Chao Liu, Jian Ni, Juan Li, Jianjun Zhang
{"title":"Nonvolatile and Strongly Coordinating Solvent Enables Blade-coating of Efficient FACs-based Perovskite Solar Cells.","authors":"Zhihao Hu, Hongkun Cai, Xiaoguang Luo, Baoyu Han, Jifeng Liu, Qinwen Guo, Yingchen Li, Chao Liu, Jian Ni, Juan Li, Jianjun Zhang","doi":"10.1002/smtd.202402177","DOIUrl":null,"url":null,"abstract":"<p><p>Blade-coating has emerges as a critical route for scalable manufacturing of perovskite solar cells. However, the N<sub>2</sub> knife-assisted blade-coating process under ambient conditions typically yields inferior-quality perovskite films due to inadequate nucleation control and disorderly rapid crystallization. To address this challenge, a novel solvent engineering strategy is developed through the substitution of N-methyl-2-pyrrolidone (NMP) with 1,3-dimethyl-1,3-diazinan-2-one (DMPU). The unique physicochemical properties of DMPU, characterized by low vapor pressure, strong coordination capability, and limited PbI<sub>2</sub> solubility, synergistically regulate nucleation and crystallization kinetics. This enables rapid nucleation, stabilization of intermediate phases in wet films, and controlled crystal growth, ultimately producing phase-pure perovskite films with reduced defect density. Moreover, the feasibility and superiority of the mixed solvent strategy are demonstrated. The optimized blade-coated PSCs achieve a power conversion efficiency of 21.74% with enhanced operational stability, retaining 84% initial efficiency under continuous 1-sun illumination for 1,000 h. This work provides new insights into solvent design for preparing blade-coated perovskite films.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2402177"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202402177","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Blade-coating has emerges as a critical route for scalable manufacturing of perovskite solar cells. However, the N2 knife-assisted blade-coating process under ambient conditions typically yields inferior-quality perovskite films due to inadequate nucleation control and disorderly rapid crystallization. To address this challenge, a novel solvent engineering strategy is developed through the substitution of N-methyl-2-pyrrolidone (NMP) with 1,3-dimethyl-1,3-diazinan-2-one (DMPU). The unique physicochemical properties of DMPU, characterized by low vapor pressure, strong coordination capability, and limited PbI2 solubility, synergistically regulate nucleation and crystallization kinetics. This enables rapid nucleation, stabilization of intermediate phases in wet films, and controlled crystal growth, ultimately producing phase-pure perovskite films with reduced defect density. Moreover, the feasibility and superiority of the mixed solvent strategy are demonstrated. The optimized blade-coated PSCs achieve a power conversion efficiency of 21.74% with enhanced operational stability, retaining 84% initial efficiency under continuous 1-sun illumination for 1,000 h. This work provides new insights into solvent design for preparing blade-coated perovskite films.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Atomic Layer Thickness Modulated the Catalytic Activity of Platinum for Oxygen Reduction and Hydrogen Oxidation Reaction. Electrochemical Sensor Based on Black Phosphorus for Antimony Detection Using Dip-Pen Nanolithography: The Role of Dwell Time. Engineered Intelligent Microenvironment Responsive Prodrug Conjugates Navigated by Bioinspired Lipoproteins for Reversing Liver Fibrosis. Ion-induced Effect of Ce, Ni Dual Site Doped LaCoO3 Catalyst for Efficient Electrocatalytic Water Oxidation. Plasmonic Nanocrystal-MOF Nanocomposites as Highly Active Photocatalysts and Highly Sensitive Sensors for CO2 Reduction over a Wide Range of Solar Wavelengths.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1