{"title":"Nonvolatile and Strongly Coordinating Solvent Enables Blade-coating of Efficient FACs-based Perovskite Solar Cells.","authors":"Zhihao Hu, Hongkun Cai, Xiaoguang Luo, Baoyu Han, Jifeng Liu, Qinwen Guo, Yingchen Li, Chao Liu, Jian Ni, Juan Li, Jianjun Zhang","doi":"10.1002/smtd.202402177","DOIUrl":null,"url":null,"abstract":"<p><p>Blade-coating has emerges as a critical route for scalable manufacturing of perovskite solar cells. However, the N<sub>2</sub> knife-assisted blade-coating process under ambient conditions typically yields inferior-quality perovskite films due to inadequate nucleation control and disorderly rapid crystallization. To address this challenge, a novel solvent engineering strategy is developed through the substitution of N-methyl-2-pyrrolidone (NMP) with 1,3-dimethyl-1,3-diazinan-2-one (DMPU). The unique physicochemical properties of DMPU, characterized by low vapor pressure, strong coordination capability, and limited PbI<sub>2</sub> solubility, synergistically regulate nucleation and crystallization kinetics. This enables rapid nucleation, stabilization of intermediate phases in wet films, and controlled crystal growth, ultimately producing phase-pure perovskite films with reduced defect density. Moreover, the feasibility and superiority of the mixed solvent strategy are demonstrated. The optimized blade-coated PSCs achieve a power conversion efficiency of 21.74% with enhanced operational stability, retaining 84% initial efficiency under continuous 1-sun illumination for 1,000 h. This work provides new insights into solvent design for preparing blade-coated perovskite films.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2402177"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202402177","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Blade-coating has emerges as a critical route for scalable manufacturing of perovskite solar cells. However, the N2 knife-assisted blade-coating process under ambient conditions typically yields inferior-quality perovskite films due to inadequate nucleation control and disorderly rapid crystallization. To address this challenge, a novel solvent engineering strategy is developed through the substitution of N-methyl-2-pyrrolidone (NMP) with 1,3-dimethyl-1,3-diazinan-2-one (DMPU). The unique physicochemical properties of DMPU, characterized by low vapor pressure, strong coordination capability, and limited PbI2 solubility, synergistically regulate nucleation and crystallization kinetics. This enables rapid nucleation, stabilization of intermediate phases in wet films, and controlled crystal growth, ultimately producing phase-pure perovskite films with reduced defect density. Moreover, the feasibility and superiority of the mixed solvent strategy are demonstrated. The optimized blade-coated PSCs achieve a power conversion efficiency of 21.74% with enhanced operational stability, retaining 84% initial efficiency under continuous 1-sun illumination for 1,000 h. This work provides new insights into solvent design for preparing blade-coated perovskite films.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.