Bivalent Hapten Display Strategies for Conjugate Vaccines Targeting Opioid Mixtures Containing Fentanyl.

IF 4 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS Bioconjugate Chemistry Pub Date : 2025-03-16 DOI:10.1021/acs.bioconjchem.4c00548
Carly Baehr, Rajwana Jahan, Ann Gebo, Jennifer Vigliaturo, Daihyun Song, Md Toufiqur Rahman, Davide Tronconi, Aaron Khaimraj, Robert Seaman, Courtney Marecki, Caroline M Kim, Stefano Persano, Scott P Runyon, Marco Pravetoni
{"title":"Bivalent Hapten Display Strategies for Conjugate Vaccines Targeting Opioid Mixtures Containing Fentanyl.","authors":"Carly Baehr, Rajwana Jahan, Ann Gebo, Jennifer Vigliaturo, Daihyun Song, Md Toufiqur Rahman, Davide Tronconi, Aaron Khaimraj, Robert Seaman, Courtney Marecki, Caroline M Kim, Stefano Persano, Scott P Runyon, Marco Pravetoni","doi":"10.1021/acs.bioconjchem.4c00548","DOIUrl":null,"url":null,"abstract":"<p><p>Increasingly, street mixtures of opioids are reported to contain combinations of synthetic opioids, such as fentanyl with fentanyl analogues or counterfeit oxycodone pills containing fentanyl. While antiopioid immunotherapeutics have been investigated as a possible approach to address the opioid epidemic, the efficacy of vaccines and antibodies is limited to specific target opioids, based on the chemical structure of the haptens used in vaccines. Hence, there is a need for rational design of antiopioid conjugate vaccines that simultaneously target multiple opioids. Here, four novel haptens were synthesized, which were designed to elicit antibodies capable of binding to fentanyl other target opioids, including carfentanil, alfentanil, or oxycodone. Haptens were conjugated to CRM carrier protein and formulated with an aluminum salt adjuvant, and vaccines containing bivalent haptens were compared to admixtures of individual conjugate vaccines targeting the two opioids separately. Rats were immunized with monovalent, admixed, or novel bivalent vaccines, and the blockade of opioid effects was assessed against the individual drugs and their mixtures. Opioid-specific antibody titer was measured, and in vivo effects of vaccines were assessed in terms of preventing opioid-induced antinociception and respiratory depression and opioid distribution to the brain. While the bivalent vaccines reduced the effects of some target opioids, the admixed vaccine formulations were more effective against fentanyl/carfentanil and fentanyl/alfentanil mixtures. The bivalent fentanyl/oxycodone vaccine was as effective as the monovalent vaccines against a single drug challenge. These results inform the design of future vaccines against opioids and other drugs, particularly in the context of vaccines against polysubstance use that require optimization of response against multiple drugs of interest.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00548","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Increasingly, street mixtures of opioids are reported to contain combinations of synthetic opioids, such as fentanyl with fentanyl analogues or counterfeit oxycodone pills containing fentanyl. While antiopioid immunotherapeutics have been investigated as a possible approach to address the opioid epidemic, the efficacy of vaccines and antibodies is limited to specific target opioids, based on the chemical structure of the haptens used in vaccines. Hence, there is a need for rational design of antiopioid conjugate vaccines that simultaneously target multiple opioids. Here, four novel haptens were synthesized, which were designed to elicit antibodies capable of binding to fentanyl other target opioids, including carfentanil, alfentanil, or oxycodone. Haptens were conjugated to CRM carrier protein and formulated with an aluminum salt adjuvant, and vaccines containing bivalent haptens were compared to admixtures of individual conjugate vaccines targeting the two opioids separately. Rats were immunized with monovalent, admixed, or novel bivalent vaccines, and the blockade of opioid effects was assessed against the individual drugs and their mixtures. Opioid-specific antibody titer was measured, and in vivo effects of vaccines were assessed in terms of preventing opioid-induced antinociception and respiratory depression and opioid distribution to the brain. While the bivalent vaccines reduced the effects of some target opioids, the admixed vaccine formulations were more effective against fentanyl/carfentanil and fentanyl/alfentanil mixtures. The bivalent fentanyl/oxycodone vaccine was as effective as the monovalent vaccines against a single drug challenge. These results inform the design of future vaccines against opioids and other drugs, particularly in the context of vaccines against polysubstance use that require optimization of response against multiple drugs of interest.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对含有芬太尼的阿片类混合物的共轭疫苗的二价合体展示策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioconjugate Chemistry
Bioconjugate Chemistry 生物-化学综合
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Receptor-Mediated Transmembrane Activation of Protein Folding in Synthetic Cells. Bivalent Hapten Display Strategies for Conjugate Vaccines Targeting Opioid Mixtures Containing Fentanyl. Rational Design of Site-Specific Fatty Acid Derivatives to Extend the Half-Life of Fibroblast Growth Factor 21.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1