Receptor-Mediated Transmembrane Activation of Protein Folding in Synthetic Cells.

IF 4 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS Bioconjugate Chemistry Pub Date : 2025-03-17 DOI:10.1021/acs.bioconjchem.5c00043
Andreas Bo Tker Pedersen, Dante Guldbrandsen Andersen, Josefine Hammer Jakobsen, Mireia Casanovas Montasell, Alexander N Zelikin
{"title":"Receptor-Mediated Transmembrane Activation of Protein Folding in Synthetic Cells.","authors":"Andreas Bo Tker Pedersen, Dante Guldbrandsen Andersen, Josefine Hammer Jakobsen, Mireia Casanovas Montasell, Alexander N Zelikin","doi":"10.1021/acs.bioconjchem.5c00043","DOIUrl":null,"url":null,"abstract":"<p><p>Synthetic cells are a rapidly maturing platform with emerging applications in biomedicine and biotechnology. The specific novelty of this work is that we develop synthetic cells that respond to an extracellular stimulus by performing the folding of an encapsulated polypeptide into a functional enzyme. To this end, we developed artificial transmembrane signaling receptors. These contain an extracellular enzyme-responsive group, a self-immolative linker as the mechanism of signal transduction, and a secondary messenger molecule with intracellular activity. The secondary messenger is chosen such that it initiates protein refolding from the denatured polypeptide. Results of this study expand the molecular toolbox for the design of synthetic cells with life-like, responsive behavior.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.5c00043","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic cells are a rapidly maturing platform with emerging applications in biomedicine and biotechnology. The specific novelty of this work is that we develop synthetic cells that respond to an extracellular stimulus by performing the folding of an encapsulated polypeptide into a functional enzyme. To this end, we developed artificial transmembrane signaling receptors. These contain an extracellular enzyme-responsive group, a self-immolative linker as the mechanism of signal transduction, and a secondary messenger molecule with intracellular activity. The secondary messenger is chosen such that it initiates protein refolding from the denatured polypeptide. Results of this study expand the molecular toolbox for the design of synthetic cells with life-like, responsive behavior.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioconjugate Chemistry
Bioconjugate Chemistry 生物-化学综合
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Receptor-Mediated Transmembrane Activation of Protein Folding in Synthetic Cells. Bivalent Hapten Display Strategies for Conjugate Vaccines Targeting Opioid Mixtures Containing Fentanyl. Rational Design of Site-Specific Fatty Acid Derivatives to Extend the Half-Life of Fibroblast Growth Factor 21.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1