Shuang Ni, Yi-Tao Li, Xi Xu, Siyu Hou, Xingqiang Lü, Qing-Yuan Yang
{"title":"A Fluorinated Zinc-based Metal-Organic Framework for Efficient Separation of Butane Isomers via Pore Engineering.","authors":"Shuang Ni, Yi-Tao Li, Xi Xu, Siyu Hou, Xingqiang Lü, Qing-Yuan Yang","doi":"10.1002/smtd.202500027","DOIUrl":null,"url":null,"abstract":"<p><p>Separating n-butane/iso-butane is a challenging and energy-intensive task in the petrochemical industry. There have been only several adsorbents reported for C4 paraffins separation while they are confronted in real-world applications with either poor selectivity or low n-butane uptake capacity. In this study, a fluorinated zinc-based metal-organic framework (MOF), Znpyc-CF<sub>3</sub>, derived from Znpyc-CH<sub>3</sub> is developed, which has fluorine-containing functional groups on the pore surface that can enhance the interaction with the linear n-butane. Remarkably, this fluorinated porous material demonstrates both high n-butane uptake (55.5 cm<sup>3</sup> g⁻¹) and excellent selectivity (IAST selectivity = 187) at ambient temperature. Multicycle breakthrough experiments confirmed its practical performance for real gas mixtures. Znpyc-CF<sub>3</sub> exhibits outstanding stability, maintaining its structural integrity after repeated sorption cycles and dynamic breakthrough tests under both dry and highly humid conditions. The preferential adsorption mechanism of n-butane is further elucidated through Grand Canonical Monte Carlo (GCMC) simulations and Density Functional Theory (DFT) calculations. Overall, this research presents an efficient and stable adsorbent for the separation of butane isomers.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500027"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500027","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Separating n-butane/iso-butane is a challenging and energy-intensive task in the petrochemical industry. There have been only several adsorbents reported for C4 paraffins separation while they are confronted in real-world applications with either poor selectivity or low n-butane uptake capacity. In this study, a fluorinated zinc-based metal-organic framework (MOF), Znpyc-CF3, derived from Znpyc-CH3 is developed, which has fluorine-containing functional groups on the pore surface that can enhance the interaction with the linear n-butane. Remarkably, this fluorinated porous material demonstrates both high n-butane uptake (55.5 cm3 g⁻¹) and excellent selectivity (IAST selectivity = 187) at ambient temperature. Multicycle breakthrough experiments confirmed its practical performance for real gas mixtures. Znpyc-CF3 exhibits outstanding stability, maintaining its structural integrity after repeated sorption cycles and dynamic breakthrough tests under both dry and highly humid conditions. The preferential adsorption mechanism of n-butane is further elucidated through Grand Canonical Monte Carlo (GCMC) simulations and Density Functional Theory (DFT) calculations. Overall, this research presents an efficient and stable adsorbent for the separation of butane isomers.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.