{"title":"Development and Validation of a Capillary Electrophoresis Coupled to Mass Spectrometry Pipeline for Comparable Assessment of the Plasma Peptidome.","authors":"Lucie Fernandez, Benjamin Breuil, Carine Froment, Mouhamed Seye, Babacar Sylla, Marina Estanco, Adeline Chaubet, Eléonore Delecroix, Karima Chaoui, Jeanne Pierrette Vu, Serban Ardeleanu, Stanislas Faguer, Odile Burlet-Schiltz, Bénédicte Buffin-Meyer, Joost P Schanstra, Julie Klein","doi":"10.1002/pmic.202400114","DOIUrl":null,"url":null,"abstract":"<p><p>Although capillary electrophoresis coupled to mass spectrometry (CE-MS) holds promise for urinary peptide profiling, only a limited number of studies have used CE-MS to study plasma peptides. Here we describe the establishment of a workflow, including sample preparation, CE-MS analysis, data processing and normalization optimized for the analysis of plasma peptides. Using 291 plasma samples from 136 patients with end stage kidney failure (including pre- and post-dialysis samples) and 20 patients with chronic kidney disease, we identified and quantified the abundance of 3920 unique plasma peptides. The repeatability and intermediate precision of the analysis were high (with a coefficient of variation of 5% on average for all peptides). Six hundred sixty-one out of 3920 peptides were sequenced by CE-MS/MS. These peptide fragments belonged to 135 parent proteins. Using the pipeline, we identified 169 sequenced plasma peptides with different plasma abundance pre- and post-dialysis. These peptides combined in a support vector machine (SVM) classifier successfully discriminated between pre- and post-dialysis samples in a blinded validation cohort of 45 dialysis patients. Enriched peptides post-dialyses were for the major part associated to inflammation and the coagulation contact systems that may serve as signatures for optimizing dialysis materials. In conclusion, this high-throughput strategy focuses on the plasma peptidome, an understudied component of the plasma, as a promising area for further exploration. Due to their close proximity to the vascular bed, plasma peptides hold significant potential to serve as reliable biomarkers for systemic complications associated with kidney disease.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":" ","pages":"e202400114"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pmic.202400114","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Although capillary electrophoresis coupled to mass spectrometry (CE-MS) holds promise for urinary peptide profiling, only a limited number of studies have used CE-MS to study plasma peptides. Here we describe the establishment of a workflow, including sample preparation, CE-MS analysis, data processing and normalization optimized for the analysis of plasma peptides. Using 291 plasma samples from 136 patients with end stage kidney failure (including pre- and post-dialysis samples) and 20 patients with chronic kidney disease, we identified and quantified the abundance of 3920 unique plasma peptides. The repeatability and intermediate precision of the analysis were high (with a coefficient of variation of 5% on average for all peptides). Six hundred sixty-one out of 3920 peptides were sequenced by CE-MS/MS. These peptide fragments belonged to 135 parent proteins. Using the pipeline, we identified 169 sequenced plasma peptides with different plasma abundance pre- and post-dialysis. These peptides combined in a support vector machine (SVM) classifier successfully discriminated between pre- and post-dialysis samples in a blinded validation cohort of 45 dialysis patients. Enriched peptides post-dialyses were for the major part associated to inflammation and the coagulation contact systems that may serve as signatures for optimizing dialysis materials. In conclusion, this high-throughput strategy focuses on the plasma peptidome, an understudied component of the plasma, as a promising area for further exploration. Due to their close proximity to the vascular bed, plasma peptides hold significant potential to serve as reliable biomarkers for systemic complications associated with kidney disease.
期刊介绍:
PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.