High glucose levels promote glycolysis and cholesterol synthesis via ERRα and suppress the autophagy-lysosomal pathway in endometrial cancer.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY Cell Death & Disease Pub Date : 2025-03-17 DOI:10.1038/s41419-025-07499-y
Xiaodan Mao, Lixiang Huang, Xianhua Liu, Xite Lin, Qibin Wu, Xinrui Wang, Yuan Ren, Jincheng Ma, Maotong Zhang, Yao Lin, Damian J Ralser, Alexander Mustea, Gang Chen, Pengming Sun
{"title":"High glucose levels promote glycolysis and cholesterol synthesis via ERRα and suppress the autophagy-lysosomal pathway in endometrial cancer.","authors":"Xiaodan Mao, Lixiang Huang, Xianhua Liu, Xite Lin, Qibin Wu, Xinrui Wang, Yuan Ren, Jincheng Ma, Maotong Zhang, Yao Lin, Damian J Ralser, Alexander Mustea, Gang Chen, Pengming Sun","doi":"10.1038/s41419-025-07499-y","DOIUrl":null,"url":null,"abstract":"<p><p>Endometrial cancer (EC) patients with Diabetes Mellitus (DM) always have a poor prognosis. Estrogen-related receptor α (ERRα) is known as the metabolic-related prognostic factor for EC. However, the mechanism linking glycolipid metabolism dysfunction mediated by ERRα to poor prognosis of EC with DM is still unclear. In vitro, high-glucose (HG) levels showed enhancement of ERRα expression, cell proliferation, and inhibition of the autophagic lysosomes and apoptosis by flow cytometry analysis, transmission electron microscopy, and CCK-8 assays. Mechanistically, lose-and-gain function assay, DNA sequencing, and CO-IP revealed HG increased ERRα expression to promote the transcription of HK2 and HMGCS1, which were the key rate-limiting enzyme of glycolysis-cholesterol synthesis and their metabolites suppressed the autophagy-lysosomal pathway in an ERRα-dependent manner. Furthermore, CO-IP and molecular dynamics simulation uncovered the protein residues (ARG 769<sub>HK2</sub> vs. ARG 313<sub>HMGCS1</sub>) of HK2 and HMGCS1 could bind to p62 to form stable protein complexes involved in the autophagy-lysosomal pathway. In EC tissue from patients with comorbid DM, ERRα was significantly higher expressed compared to EC tissue from patients without evidence for DM (p < 0.05). The 3D EC organoid model with HG stimulation showed that the cell viability of XCT790 + carboplatin treatment was similar to that of metformin+carboplatin treatment, while the obviously bigger volume of organoids was more visible in the metformin+carboplatin group, indicating the therapy of XCT790 + carboplatin had the better inhibition of EC organoids with the same carboplatin dose. Besides insights into the interaction of HG and the autophagy-lysosomal pathway via ERRα, our present study points out the potential benefit of targeting ERRα in patients with EC with dysregulation of glucose and cholesterol metabolism.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"182"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07499-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Endometrial cancer (EC) patients with Diabetes Mellitus (DM) always have a poor prognosis. Estrogen-related receptor α (ERRα) is known as the metabolic-related prognostic factor for EC. However, the mechanism linking glycolipid metabolism dysfunction mediated by ERRα to poor prognosis of EC with DM is still unclear. In vitro, high-glucose (HG) levels showed enhancement of ERRα expression, cell proliferation, and inhibition of the autophagic lysosomes and apoptosis by flow cytometry analysis, transmission electron microscopy, and CCK-8 assays. Mechanistically, lose-and-gain function assay, DNA sequencing, and CO-IP revealed HG increased ERRα expression to promote the transcription of HK2 and HMGCS1, which were the key rate-limiting enzyme of glycolysis-cholesterol synthesis and their metabolites suppressed the autophagy-lysosomal pathway in an ERRα-dependent manner. Furthermore, CO-IP and molecular dynamics simulation uncovered the protein residues (ARG 769HK2 vs. ARG 313HMGCS1) of HK2 and HMGCS1 could bind to p62 to form stable protein complexes involved in the autophagy-lysosomal pathway. In EC tissue from patients with comorbid DM, ERRα was significantly higher expressed compared to EC tissue from patients without evidence for DM (p < 0.05). The 3D EC organoid model with HG stimulation showed that the cell viability of XCT790 + carboplatin treatment was similar to that of metformin+carboplatin treatment, while the obviously bigger volume of organoids was more visible in the metformin+carboplatin group, indicating the therapy of XCT790 + carboplatin had the better inhibition of EC organoids with the same carboplatin dose. Besides insights into the interaction of HG and the autophagy-lysosomal pathway via ERRα, our present study points out the potential benefit of targeting ERRα in patients with EC with dysregulation of glucose and cholesterol metabolism.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
期刊最新文献
Correction: Cardiac-specific CGI-58 deficiency activates the ER stress pathway to promote heart failure in mice. High glucose levels promote glycolysis and cholesterol synthesis via ERRα and suppress the autophagy-lysosomal pathway in endometrial cancer. TFE3 and HIF1α regulates the expression of SHMT2 isoforms via alternative promoter utilization in ovarian cancer cells. Therapeutic targeting de novo purine biosynthesis driven by β-catenin-dependent PPAT upregulation in hepatoblastoma. Ubiquitination of gasdermin D N-terminal domain directs its membrane translocation and pore formation during pyroptosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1