Jointly modeling means and variances for nonlinear mixed effects models with measurement errors and outliers.

IF 1.7 4区 数学 Q3 BIOLOGY Biometrics Pub Date : 2025-01-07 DOI:10.1093/biomtc/ujaf018
Qian Ye, Lang Wu, Viviane Dias Lima
{"title":"Jointly modeling means and variances for nonlinear mixed effects models with measurement errors and outliers.","authors":"Qian Ye, Lang Wu, Viviane Dias Lima","doi":"10.1093/biomtc/ujaf018","DOIUrl":null,"url":null,"abstract":"<p><p>In longitudinal data analyses, the within-individual repeated measurements often exhibit large variations and these variations appear to change over time. Understanding the nature of the within-individual systematic and random variations allows us to conduct more efficient statistical inferences. Motivated by human immunodeficiency virus (HIV) viral dynamic studies, we considered a nonlinear mixed effects model for modeling the longitudinal means, together with a model for the within-individual variances which also allows us to address outliers in the repeated measurements. Statistical inference was then based on a joint model for the mean and variance, implemented by a computationally efficient approximate method. Extensive simulations evaluated the proposed method. We found that the proposed method produces more efficient estimates than the corresponding method without modeling the variances. Moreover, the proposed method provides robust inference against outliers. The proposed method was applied to a recent HIV-related dataset, with interesting new findings.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf018","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In longitudinal data analyses, the within-individual repeated measurements often exhibit large variations and these variations appear to change over time. Understanding the nature of the within-individual systematic and random variations allows us to conduct more efficient statistical inferences. Motivated by human immunodeficiency virus (HIV) viral dynamic studies, we considered a nonlinear mixed effects model for modeling the longitudinal means, together with a model for the within-individual variances which also allows us to address outliers in the repeated measurements. Statistical inference was then based on a joint model for the mean and variance, implemented by a computationally efficient approximate method. Extensive simulations evaluated the proposed method. We found that the proposed method produces more efficient estimates than the corresponding method without modeling the variances. Moreover, the proposed method provides robust inference against outliers. The proposed method was applied to a recent HIV-related dataset, with interesting new findings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有测量误差和异常值的非线性混合效应模型的均值和方差联合建模。
在纵向数据分析中,个体内重复测量经常表现出很大的变化,这些变化似乎随时间而变化。了解个体内部系统和随机变化的本质使我们能够进行更有效的统计推断。受人类免疫缺陷病毒(HIV)病毒动力学研究的启发,我们考虑了一个非线性混合效应模型来模拟纵向均值,以及一个个体内方差模型,该模型也允许我们处理重复测量中的异常值。然后,统计推断基于均值和方差的联合模型,通过计算效率高的近似方法实现。大量的仿真评估了所提出的方法。我们发现,所提出的方法比没有对方差建模的相应方法产生更有效的估计。此外,该方法对异常值具有鲁棒性推断。将提出的方法应用于最近的hiv相关数据集,有了有趣的新发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
期刊最新文献
Computational aspects of psychometric methods with R by Patricia Martinková and Adéla Hladká, Chapman & Hall/CRC, 2023, ISBN: 9781003054313, https://doi.org/10.1201/9781003054313. Statistical inference for heterogeneous treatment effect with right-censored data from synthesizing randomized clinical trials and real-world data. Inverse-intensity weighted generalized estimating equations for longitudinal data subject to irregular observation: which variables should be included in the visit rate model? A meta-learning method for estimation of causal excursion effects to assess time-varying moderation. Randomized optimal selection design for dose optimization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1