Changing rod stiffness to moderate stress of adjacent disc in oblique lumbar interbody fusion - a finite element analysis.

IF 2.2 3区 医学 Q2 ORTHOPEDICS BMC Musculoskeletal Disorders Pub Date : 2025-03-17 DOI:10.1186/s12891-025-08504-3
Po-Hsin Chou, Jing-Jie Chen, Chen-Sheng Chen, Shih-Tien Wang, Chien-Lin Liu, Shih-Liang Shih
{"title":"Changing rod stiffness to moderate stress of adjacent disc in oblique lumbar interbody fusion - a finite element analysis.","authors":"Po-Hsin Chou, Jing-Jie Chen, Chen-Sheng Chen, Shih-Tien Wang, Chien-Lin Liu, Shih-Liang Shih","doi":"10.1186/s12891-025-08504-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>OLIF (oblique lumbar interbody fusion) is a minimally invasive surgery to treat spinal instability. However, clinical studies indicated the early degeneration of adjacent segments after surgery. The rod stiffness of OLIF was associated with change at adjacent segments. Therefore, the study aimed to compare the biomechanical effects of OLIF with different rod material properties using the finite element (FE) method.</p><p><strong>Methods: </strong>A validated L1-L5 lumbar spine was conducted in the biomechanical analysis using FE software ANSYS. The FE model of OLIF with a rod was created. Current biocompatible materials for the rod of the OLIF model were changed, including titanium alloy (OLIF_Ti), nickel-titanium alloy (OLIF_NiTi), and polycarbonate urethane (OLIF_PCU) rod. Four FE models, consisting of the intact model (INT) and implant models, were created. Hybrid control loads, such as flexion, extension, rotation, and lateral bending, were subjected to four models on the L1 vertebral body. The bottom of the L5 vertebral body was fixed.</p><p><strong>Results: </strong>At the surgical level, while compared to the INT model, the OLIF_Ti and OLIF_NiTi model resulted in a ROM reduction of over 40% at least, but the OLIF_PCU changed about 10% in flexion and extension. At adjacent level L2-L3, the FE results indicated that the OLIF_Ti and OLIF_NiTi model increased more stress by about 12% at least than the INT model at the adjacent segment, but it demonstrated that the OLIF_PCU would not result in stress rise at the adjacent level L2-L3 in flexion and extension.</p><p><strong>Conclusion: </strong>The study concluded that rod stiffness was associated with change at the adjacent segments. The use of OLIF surgery with PCU rods can minimize the impact of the adjacent segment after lumbar fusion.</p>","PeriodicalId":9189,"journal":{"name":"BMC Musculoskeletal Disorders","volume":"26 1","pages":"267"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912698/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Musculoskeletal Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12891-025-08504-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: OLIF (oblique lumbar interbody fusion) is a minimally invasive surgery to treat spinal instability. However, clinical studies indicated the early degeneration of adjacent segments after surgery. The rod stiffness of OLIF was associated with change at adjacent segments. Therefore, the study aimed to compare the biomechanical effects of OLIF with different rod material properties using the finite element (FE) method.

Methods: A validated L1-L5 lumbar spine was conducted in the biomechanical analysis using FE software ANSYS. The FE model of OLIF with a rod was created. Current biocompatible materials for the rod of the OLIF model were changed, including titanium alloy (OLIF_Ti), nickel-titanium alloy (OLIF_NiTi), and polycarbonate urethane (OLIF_PCU) rod. Four FE models, consisting of the intact model (INT) and implant models, were created. Hybrid control loads, such as flexion, extension, rotation, and lateral bending, were subjected to four models on the L1 vertebral body. The bottom of the L5 vertebral body was fixed.

Results: At the surgical level, while compared to the INT model, the OLIF_Ti and OLIF_NiTi model resulted in a ROM reduction of over 40% at least, but the OLIF_PCU changed about 10% in flexion and extension. At adjacent level L2-L3, the FE results indicated that the OLIF_Ti and OLIF_NiTi model increased more stress by about 12% at least than the INT model at the adjacent segment, but it demonstrated that the OLIF_PCU would not result in stress rise at the adjacent level L2-L3 in flexion and extension.

Conclusion: The study concluded that rod stiffness was associated with change at the adjacent segments. The use of OLIF surgery with PCU rods can minimize the impact of the adjacent segment after lumbar fusion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Musculoskeletal Disorders
BMC Musculoskeletal Disorders 医学-风湿病学
CiteScore
3.80
自引率
8.70%
发文量
1017
审稿时长
3-6 weeks
期刊介绍: BMC Musculoskeletal Disorders is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of musculoskeletal disorders, as well as related molecular genetics, pathophysiology, and epidemiology. The scope of the Journal covers research into rheumatic diseases where the primary focus relates specifically to a component(s) of the musculoskeletal system.
期刊最新文献
Comparison of the clinical efficacy of patellar lateral retraction and patellar eversion in total knee arthroplasty: a systematic review and meta-analysis. The prevalence and surgical outcome of late diagnosed hip dysplasia in children with Prader-Willi syndrome: a retrospective study. Muscle loading and endochondral ossification are involved in the regeneration of a fibrocartilaginous enthesis during tendon to bone healing in rabbits. An update on improvement and innovation in the management of adult thoracolumbar spinal deformity. Evaluating the impact of movement representation techniques on recovery outcomes in post-orthopaedic surgery individuals: a systematic review and meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1