Large-Scale Analysis of the Thalassemia Mutation Spectrum in Guizhou Province, Southern China, Using Third-Generation Sequencing.

IF 2.9 3区 医学 Q2 GENETICS & HEREDITY Clinical Genetics Pub Date : 2025-03-17 DOI:10.1111/cge.14729
Ying Zhang, Jiangfen Wu, Lingyan Ren, Fangfang Li, Xian Wu, Min Guo, Guiqin You, Zhengqian Fu, Guiping Long, Shengwen Huang
{"title":"Large-Scale Analysis of the Thalassemia Mutation Spectrum in Guizhou Province, Southern China, Using Third-Generation Sequencing.","authors":"Ying Zhang, Jiangfen Wu, Lingyan Ren, Fangfang Li, Xian Wu, Min Guo, Guiqin You, Zhengqian Fu, Guiping Long, Shengwen Huang","doi":"10.1111/cge.14729","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to comprehensively characterize the molecular spectrum of thalassemia by retrospectively analyzing genetic screening results from a large cohort of individuals. Peripheral blood samples were collected from 26 047 individuals seeking care at the Departments of Obstetrics and Gynecology, Pediatrics, Reproductive Medicine, and Hematology across multiple regional hospitals in Guizhou Province, China. Thalassemia gene mutations were analyzed using targeted third-generation sequencing (TGS) to assess the mutation spectrum in this population. Of the cohort, 5099 individuals were identified as thalassemia carriers, yielding an overall carrier rate of 19.58%. The carrier rates differed significantly between the southern and northern regions of Guizhou (p < 0.001). α-thalassemia included 40 distinct genotypes, β-thalassemia comprised 33 genotypes, and cases with concurrent α- and β-thalassemia mutations exhibited 47 unique genotypes. A total of 17 distinct mutations were identified in the α-thalassemia gene and 26 in the β-thalassemia gene. The mutation spectrum in Guizhou showed significant differences when compared to other southern Chinese populations, with notable regional variations within Guizhou itself. This study highlights the substantial genetic diversity and distinct mutation patterns of thalassemia in Guizhou Province. These findings provide valuable insights into the distribution of thalassemia genotypes and alleles, which can inform genetic counseling and prenatal screening strategies tailored to this population.</p>","PeriodicalId":10354,"journal":{"name":"Clinical Genetics","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/cge.14729","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to comprehensively characterize the molecular spectrum of thalassemia by retrospectively analyzing genetic screening results from a large cohort of individuals. Peripheral blood samples were collected from 26 047 individuals seeking care at the Departments of Obstetrics and Gynecology, Pediatrics, Reproductive Medicine, and Hematology across multiple regional hospitals in Guizhou Province, China. Thalassemia gene mutations were analyzed using targeted third-generation sequencing (TGS) to assess the mutation spectrum in this population. Of the cohort, 5099 individuals were identified as thalassemia carriers, yielding an overall carrier rate of 19.58%. The carrier rates differed significantly between the southern and northern regions of Guizhou (p < 0.001). α-thalassemia included 40 distinct genotypes, β-thalassemia comprised 33 genotypes, and cases with concurrent α- and β-thalassemia mutations exhibited 47 unique genotypes. A total of 17 distinct mutations were identified in the α-thalassemia gene and 26 in the β-thalassemia gene. The mutation spectrum in Guizhou showed significant differences when compared to other southern Chinese populations, with notable regional variations within Guizhou itself. This study highlights the substantial genetic diversity and distinct mutation patterns of thalassemia in Guizhou Province. These findings provide valuable insights into the distribution of thalassemia genotypes and alleles, which can inform genetic counseling and prenatal screening strategies tailored to this population.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinical Genetics
Clinical Genetics 医学-遗传学
CiteScore
6.50
自引率
0.00%
发文量
175
审稿时长
3-8 weeks
期刊介绍: Clinical Genetics links research to the clinic, translating advances in our understanding of the molecular basis of genetic disease for the practising clinical geneticist. The journal publishes high quality research papers, short reports, reviews and mini-reviews that connect medical genetics research with clinical practice. Topics of particular interest are: • Linking genetic variations to disease • Genome rearrangements and disease • Epigenetics and disease • The translation of genotype to phenotype • Genetics of complex disease • Management/intervention of genetic diseases • Novel therapies for genetic diseases • Developmental biology, as it relates to clinical genetics • Social science research on the psychological and behavioural aspects of living with or being at risk of genetic disease
期刊最新文献
Large-Scale Analysis of the Thalassemia Mutation Spectrum in Guizhou Province, Southern China, Using Third-Generation Sequencing. Genotype-Phenotype Correlations, Treatment, and Prognosis of Children With Early-Onset (Neonatal) Marfan Syndrome. Impact of SDHA Mutations on Yeast Growth and Mitochondrial Function. Case Study Linking Genetic Findings to Clinical Phenotypes. From Function to Mechanism: Unveiling the Role of Small Nucleolar Ribonucleic Acids in Digestive Tumours. Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1