Exploring the combined roles of GALNT1 and GALNT2 in hepatocellular carcinoma malignancy and EGFR modulation.

IF 2.8 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM Discover. Oncology Pub Date : 2025-03-17 DOI:10.1007/s12672-025-02069-2
Tagwa E Osman, Yanru Guo, Shijun Li
{"title":"Exploring the combined roles of GALNT1 and GALNT2 in hepatocellular carcinoma malignancy and EGFR modulation.","authors":"Tagwa E Osman, Yanru Guo, Shijun Li","doi":"10.1007/s12672-025-02069-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hepatocellular carcinoma (HCC), the most formidable subtype of primary liver cancers, is becoming increasingly concerning due to its rising incidence worldwide. HCC ranks as the sixth most diagnosed cancer globally and is the third leading cause of cancer-related deaths. Glycosylation, a common post-translational modification of proteins, is frequently altered in tumors and is associated with the progression of malignancies. GALNT1 and GALNT2 are GalNAc-transferases that initiate protein O-glycosylation and are closely linked to cancer development. Investigating the relationship between GALNT1 and GALNT2 in HCC could provide new insights into the disease's pathogenesis. Thus, this study aimed to explore the combined effects of GALNT1 and GALNT2 transfection on HCC, compared to the effects of modifying each gene individually.</p><p><strong>Materials and methods: </strong>GALNT1 and GALNT2 were assessed by bioinformatics, qPCR, and Western blot analyses to detect their expression in HCC tissues and cell lines. The effects of GALNT1/GALNT2 overexpression and knockdown on cell viability, proliferation, migration, invasion, and apoptosis were evaluated in HCC cells using CCK8, colony formation, transwell migration and invasion, wound healing, TUNEL, and flow cytometry assays. EGFR protein levels were also analyzed by Western blotting.</p><p><strong>Results: </strong>Co-transfection of GALNT1 knockdown with GALNT2 overexpression significantly suppressed proliferation, migration, and invasion, while promoting apoptosis in HCC cells. Conversely, co-transfection of GALNT1 overexpression with GALNT2 knockdown enhanced these malignant characteristics compared to the modified single gene. Notably, we observed that GALNT1 and GALNT2 modulated EGFR protein expression. Overall, our findings suggest that the combined activity of GALNT1 and GALNT2 is critical in regulating HCC malignant behaviors.</p>","PeriodicalId":11148,"journal":{"name":"Discover. Oncology","volume":"16 1","pages":"337"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover. Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-025-02069-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Hepatocellular carcinoma (HCC), the most formidable subtype of primary liver cancers, is becoming increasingly concerning due to its rising incidence worldwide. HCC ranks as the sixth most diagnosed cancer globally and is the third leading cause of cancer-related deaths. Glycosylation, a common post-translational modification of proteins, is frequently altered in tumors and is associated with the progression of malignancies. GALNT1 and GALNT2 are GalNAc-transferases that initiate protein O-glycosylation and are closely linked to cancer development. Investigating the relationship between GALNT1 and GALNT2 in HCC could provide new insights into the disease's pathogenesis. Thus, this study aimed to explore the combined effects of GALNT1 and GALNT2 transfection on HCC, compared to the effects of modifying each gene individually.

Materials and methods: GALNT1 and GALNT2 were assessed by bioinformatics, qPCR, and Western blot analyses to detect their expression in HCC tissues and cell lines. The effects of GALNT1/GALNT2 overexpression and knockdown on cell viability, proliferation, migration, invasion, and apoptosis were evaluated in HCC cells using CCK8, colony formation, transwell migration and invasion, wound healing, TUNEL, and flow cytometry assays. EGFR protein levels were also analyzed by Western blotting.

Results: Co-transfection of GALNT1 knockdown with GALNT2 overexpression significantly suppressed proliferation, migration, and invasion, while promoting apoptosis in HCC cells. Conversely, co-transfection of GALNT1 overexpression with GALNT2 knockdown enhanced these malignant characteristics compared to the modified single gene. Notably, we observed that GALNT1 and GALNT2 modulated EGFR protein expression. Overall, our findings suggest that the combined activity of GALNT1 and GALNT2 is critical in regulating HCC malignant behaviors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Discover. Oncology
Discover. Oncology Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
2.40
自引率
9.10%
发文量
122
审稿时长
5 weeks
期刊最新文献
Ki-67 expression in anti-programmed cell death protein-1 antibody-bound CD8+ T cells as a predictor of clinical benefit. Nomogram construction for overall survival in breast angiosarcoma based on clinicopathological features: a population-based cohort study. Pan-cancer analysis of the prognosis and immune infiltration of NSUN7 and its potential function in renal clear cell carcinoma. Serum CDC42 level change during abiraterone plus prednisone treatment and its association with prognosis in metastatic castration-resistant prostate cancer patients. Targeting malignant adenomyoepithelioma of the breast: clinical insights on multimodal therapy and disease-free survival.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1