{"title":"Identification of a chromatin regulator signature and potential candidate drugs for primary open-angle glaucoma.","authors":"Xinyue Zhang, Lulu Xiao, Xiaoyu Zhou, Jiahao Xu, Li Liao, Ping Wu, Zhimin Liao, Xuanchu Duan","doi":"10.1080/17501911.2025.2479420","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>This research aims to establish a chromatin regulator (CR) signature to provide new epigenetic insights into the pathogenesis of primary open-angle glaucoma (POAG).</p><p><strong>Materials & methods: </strong>The expression profile of CRs in trabecular meshwork (TM) tissues was analyzed by bioinformatics analysis; The selected hub CRs were further verified by cell experiments.</p><p><strong>Results: </strong>We found the immune microenvironment of the TMwas changed in POAG patients and identified 3 differentially expressed CRs that were relevant to immunity. Then, we successfully constructed and proved a predicted signature based on these 3 CRs, which could effectively predict the risk of POAG. The genes co-expressed with these 3 CRs and miRNAs with are gulatory relationship were identified, and a miRNA-hub CR network was successfully constructed. The results of the Gene Set Enrichment analysis indicated that these 3 hub CRs were all associated with neurodegenerative diseases. Moreover, the human trabecular meshwork cell (HTMC) oxidative stress model was constructed, and KDM5B was significantly down-regulated in this cell model. Finally, we found 10 agents that might be helpful for patients with POAG.</p><p><strong>Conclusions: </strong>Dysregulation of CR expression in TM tissues may be involved in the occurrence and progression of POAG through multiple mechanisms.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"1-11"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17501911.2025.2479420","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: This research aims to establish a chromatin regulator (CR) signature to provide new epigenetic insights into the pathogenesis of primary open-angle glaucoma (POAG).
Materials & methods: The expression profile of CRs in trabecular meshwork (TM) tissues was analyzed by bioinformatics analysis; The selected hub CRs were further verified by cell experiments.
Results: We found the immune microenvironment of the TMwas changed in POAG patients and identified 3 differentially expressed CRs that were relevant to immunity. Then, we successfully constructed and proved a predicted signature based on these 3 CRs, which could effectively predict the risk of POAG. The genes co-expressed with these 3 CRs and miRNAs with are gulatory relationship were identified, and a miRNA-hub CR network was successfully constructed. The results of the Gene Set Enrichment analysis indicated that these 3 hub CRs were all associated with neurodegenerative diseases. Moreover, the human trabecular meshwork cell (HTMC) oxidative stress model was constructed, and KDM5B was significantly down-regulated in this cell model. Finally, we found 10 agents that might be helpful for patients with POAG.
Conclusions: Dysregulation of CR expression in TM tissues may be involved in the occurrence and progression of POAG through multiple mechanisms.
期刊介绍:
Epigenomics provides the forum to address the rapidly progressing research developments in this ever-expanding field; to report on the major challenges ahead and critical advances that are propelling the science forward. The journal delivers this information in concise, at-a-glance article formats – invaluable to a time constrained community.
Substantial developments in our current knowledge and understanding of genomics and epigenetics are constantly being made, yet this field is still in its infancy. Epigenomics provides a critical overview of the latest and most significant advances as they unfold and explores their potential application in the clinical setting.