Dysregulated biosynthesis and hydrolysis of cyclic-di-adenosine monophosphate impedes sporulation and butanol and acetone production in Clostridium beijerinckii NCIMB 8052.

IF 4.3 3区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Frontiers in Bioengineering and Biotechnology Pub Date : 2025-02-28 eCollection Date: 2025-01-01 DOI:10.3389/fbioe.2025.1547226
Marian M Awaga-Cromwell, Santosh Kumar, Hieu M Truong, Eric Agyeman-Duah, Christopher C Okonkwo, Victor C Ujor
{"title":"Dysregulated biosynthesis and hydrolysis of cyclic-di-adenosine monophosphate impedes sporulation and butanol and acetone production in <i>Clostridium beijerinckii</i> NCIMB 8052.","authors":"Marian M Awaga-Cromwell, Santosh Kumar, Hieu M Truong, Eric Agyeman-Duah, Christopher C Okonkwo, Victor C Ujor","doi":"10.3389/fbioe.2025.1547226","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Although solventogenic <i>Clostridium</i> species (SCS) produce butanol, achieving high enough titers to warrant commercialization of biobutanol remains elusive. Thus, deepening our understanding of the intricate cellular wiring of SCS is crucial to unearthing new targets and strategies for engineering novel strains capable of producing and tolerating greater concentrations of butanol.</p><p><strong>Methods: </strong>This study investigated the potential role of cyclic-di-adenosine monophosphate (c-di-AMP) in regulating solvent biosynthesis in <i>C. beijerinckii</i> NCIMB 8052. Genes for c-di-AMP-producing and degrading enzymes [DNA integrity scanning protein A (<i>disA</i>) and phosphodiesterase (<i>pde</i>), respectively] were cloned in this organism and the recombinant strains were characterized relative to the control strain.</p><p><strong>Results: </strong>Plasmid-borne expression of disA in <i>C. beijerinckii</i> led to a 1.83-fold increase in c-di-AMP levels and near complete (∼100%) inhibition of butanol and acetone biosynthesis. Conversely, c-di-AMP concentrations in the pde-expressing strain reduced 7.54-fold relative to the control with 4.20- and 2.3-fold reductions in butanol and acetone concentrations, respectively, when compared to the control strain. Relative to the control and the <i>pde</i>-expressing strains, the <i>disA</i>-expressing strain produced 1.50- and 1.90-fold more ethanol, respectively. Enzyme activity assays show that core solvent biosynthesis enzymes are mostly inhibited <i>in vitro</i> by exogenously supplemented c-di-AMP (50 nM). Both recombinant strains of <i>C. beijerinckii</i> are impaired for sporulation, particularly the <i>disA</i>-expressing strain.</p><p><strong>Discussion: </strong>Collectively, the results show that dysregulated production and hydrolysis of c-di-AMP severely impair butanol and acetone biosynthesis in <i>C. beijerinckii</i>, suggesting broader roles of this second messenger in the regulation of solventogenesis and likely, sporulation in this organism.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1547226"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906698/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1547226","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Although solventogenic Clostridium species (SCS) produce butanol, achieving high enough titers to warrant commercialization of biobutanol remains elusive. Thus, deepening our understanding of the intricate cellular wiring of SCS is crucial to unearthing new targets and strategies for engineering novel strains capable of producing and tolerating greater concentrations of butanol.

Methods: This study investigated the potential role of cyclic-di-adenosine monophosphate (c-di-AMP) in regulating solvent biosynthesis in C. beijerinckii NCIMB 8052. Genes for c-di-AMP-producing and degrading enzymes [DNA integrity scanning protein A (disA) and phosphodiesterase (pde), respectively] were cloned in this organism and the recombinant strains were characterized relative to the control strain.

Results: Plasmid-borne expression of disA in C. beijerinckii led to a 1.83-fold increase in c-di-AMP levels and near complete (∼100%) inhibition of butanol and acetone biosynthesis. Conversely, c-di-AMP concentrations in the pde-expressing strain reduced 7.54-fold relative to the control with 4.20- and 2.3-fold reductions in butanol and acetone concentrations, respectively, when compared to the control strain. Relative to the control and the pde-expressing strains, the disA-expressing strain produced 1.50- and 1.90-fold more ethanol, respectively. Enzyme activity assays show that core solvent biosynthesis enzymes are mostly inhibited in vitro by exogenously supplemented c-di-AMP (50 nM). Both recombinant strains of C. beijerinckii are impaired for sporulation, particularly the disA-expressing strain.

Discussion: Collectively, the results show that dysregulated production and hydrolysis of c-di-AMP severely impair butanol and acetone biosynthesis in C. beijerinckii, suggesting broader roles of this second messenger in the regulation of solventogenesis and likely, sporulation in this organism.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Bioengineering and Biotechnology
Frontiers in Bioengineering and Biotechnology Chemical Engineering-Bioengineering
CiteScore
8.30
自引率
5.30%
发文量
2270
审稿时长
12 weeks
期刊介绍: The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs. In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.
期刊最新文献
Transfer learning-enhanced CNN-GRU-attention model for knee joint torque prediction. Different exosomes are loaded in hydrogels for the application in the field of tissue repair. Decellularization techniques: unveiling the blueprint for tracheal tissue engineering. Dysregulated biosynthesis and hydrolysis of cyclic-di-adenosine monophosphate impedes sporulation and butanol and acetone production in Clostridium beijerinckii NCIMB 8052. Endothelial cell-modified BMSC-GT/PCL nanofiber membrane sheet constructs promote bone tissue regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1